The Capability of Deep Learning Model to Predict Ozone Across Continents in China, the United States and Europe

Author:

Han Weichao1,He Tai‐Long23,Jiang Zhe1ORCID,Zhu Rui1,Jones Dylan2ORCID,Miyazaki Kazuyuki4ORCID,Shen Yanan1ORCID

Affiliation:

1. School of Earth and Space Sciences University of Science and Technology of China Hefei China

2. Department of Physics University of Toronto Toronto ON Canada

3. Now at Department of Atmospheric Sciences University of Washington Seattle WA USA

4. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

Abstract

AbstractData‐driven methods have been extensively applied to predict atmospheric compositions. Here, we explore the capability of a deep learning (DL) model to make ozone (O3) predictions across continents in China, the United States (US) and Europe. The DL model was trained and validated with surface O3 observations in China and the US in 2015–2018. The DL model was applied to predict hourly surface O3 over three continents in 2015–2022. Compared to baseline simulations using GEOS‐Chem (GC) model, our analysis exhibits mean biases of 2.6 and 4.8 μg/m3 with correlation coefficients of 0.94 and 0.93 (DL); and mean biases of 3.7 and 5.4 μg/m3 with correlation coefficients of 0.95 and 0.92 (GC) in Europe in 2015–2018 and 2019–2022, respectively. The comparable performances between DL and GC indicate the potential of DL to make reliable predictions over spatial and temporal domains where a wealth of local observations for training is not available.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Reference40 articles.

1. AirBase. (2023).European environment agency: Surface O3measurements[Dataset].Discomap. Retrieved fromhttps://discomap.eea.europa.eu/map/fme/AirQualityExport.htm

2. AQS. (2023).Environmental protection agency: Surface O3measurements[Dataset].AQS. Retrieved fromhttps://aqs.epa.gov/aqsweb/airdata/download_files.html#Raw

3. Combining Machine Learning and Numerical Simulation for High-Resolution PM2.5 Concentration Forecast

4. Chinese Regulations Are Working—Why Is Surface Ozone Over Industrialized Areas Still High? Applying Lessons From Northeast US Air Quality Evolution

5. Data‐ and Model‐Based Urban O3 Responses to NOx Changes in China and the United States

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3