A role for virtual outcrop models in blended learning – improved 3D thinking and positive perceptions of learning

Author:

Bond Clare E.ORCID,Cawood Adam J.

Abstract

Abstract. Virtual outcrop models are increasingly used in geoscience education to supplement field-based learning but their efficacy for teaching key 3D spatial thinking skills has been little tested. With the rapid increase in online digital learning resources and blended learning, most recently because of the global COVID-19 pandemic, understanding the role of virtual field environments in supporting and developing skills conventionally taught through field-based teaching has never been more critical. Here we show the efficacy of virtual outcrop models in improving 3D spatial thinking and provide evidence for positive perceptions amongst participants using virtual outcrops in teaching and learning. Our results show that, in a simple, multiple-choice scenario, participants were more likely to choose the 3D block diagram that best represents the structure when using a virtual outcrop (59 %) compared to more traditional representations, such as a geological map (50 %) or field photograph (40 %). We add depth to these results by capturing the perceptions of a cohort of students, within our full participant set, on the use of virtual outcrops for teaching and learning, after accessing a virtual field site and outcrops which they had previously visited during a day's field teaching. We also asked all participants if and how virtual outcrops could be used effectively for teaching and training, recording 87 % of positive responses. However, only 2 % of participants felt that virtual outcrops could potentially replace in-field teaching. We note that these positive findings signal significant potential for the effective use of virtual outcrops in a blended learning environment and for breaking barriers to increase the equality, diversity and inclusivity of geoscience field skills and teaching.

Publisher

Copernicus GmbH

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3