All weather IASI single field-of-view retrievals: case study – validation with JAIVEx data
-
Published:2009-03-27
Issue:6
Volume:9
Page:2241-2255
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhou D. K.,Smith W. L.,Larar A. M.,Liu X.,Taylor J. P.,Schlüssel P.,Strow L. L.,Mango S. A.
Abstract
Abstract. Atmospheric thermodynamic parameters, such as atmospheric temperature and moisture profiles, cloud optical/microphysical properties, and surface properties are basic meteorological variables for weather forecasting. In addition, they are critical parameters in tropospheric chemistry studies. A physical, geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiances observed with satellite ultraspectral infrared sounders has been developed to determine simultaneously surface, atmospheric thermodynamic, and cloud microphysical parameters. A one-dimensional variational (1-D Var.) multivariable inverse solution of the radiative transfer equation is used to iteratively improve a background state defined by eigenvector regression. This algorithm has been applied to data from the Infrared Atmospheric Sounding Interferometer (IASI) on the EUMETSAT Metop-A satellite. The IASI retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, such as the NPOESS Airborne Sounder Testbed – Interferometer (NAST-I), in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference35 articles.
1. Aires, F., Chedin, A., Scott, N. A., and Rossow, W. B.: A regression neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument, J. Appl. Meteorol., 41, 144–159, 2002. 2. Aumann, H. H., Chahine, M. T. Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objective, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, 2003. 3. Blumstein, D., Chalon, G., Carlier, T., Buil, C., Hebert, P., Maciaszek, T., Ponce, G., and Phulpin, T.: IASI instrument: technical overview and measured performances, SPIE Proc. 5543, 196–207, 2004. 4. Borbas, E., Seemann, S. W., Huang, H.-L., Li, J., and Menzel, W. P.: Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity, Proc. Int. ATOVS Study Conf. XIV, Beijing, China, CIMSS, University of Wisconsin-Madison, 763–770, 2005. 5. Chahine, M. T., Pagano, T. S., Aumann,~H. H., Atlas,~R., Barnet,~C., Blaisdell,~J., Chen,~L., Divakarla,~M., Fetzer,~E. J., Goldberg,~M., Gautier,~C., Granger,~S., Hannon,~S., Irion,~F. W., Kakar,~R., Kalnay,~E., Lambrigtsen,~B. H., Lee,~S.-Y., Le Marshall,~J., McMillan,~W. W., McMillin,~L., Olsen,~E. T., Revercomb,~H., Rosenkranz,~P., Smith,~W. L., Staelin,~D., Strow,~L. L., Susskind,~J., Tobin,~D., Wolf, W., and Zhou, L.: AIRS: improving weather forecasting and providing new insights into climate, B. Am. Meteorol. Soc., 87, 911–926, 2006.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|