Synergistic Retrieval of Temperature and Humidity Profiles from Space-Based and Ground-Based Infrared Sounders Using an Optimal Estimation Method

Author:

Zhao Huijie,Ma Xiaohang,Jia GuoruiORCID,Mi Zhiyuan,Ji Huanlin

Abstract

The atmospheric temperature and humidity profiles of the troposphere are generally measured by radiosondes and satellites, which are essential for analyzing and predicting weather. Nevertheless, the insufficient observation frequencies and low detection accuracy of the boundary layer restricts the description of atmospheric state changes by the temperature and humidity profiles. Therefore, this work focus on retrieving the temperature and humidity profiles using observations of the FengYun-4 (FY-4) Geostationary Interferometric Infrared Sounder (GIIRS) combined with ground-based infrared spectral observations from the Atmospheric Emitted Radiance Interferometer (AERI), which are more accurate than space-based individual retrieval results and have a wider effective retrieval range than ground-based individual retrieval results. Based on the synergistic observations, which are made by matching the space-based and ground-based data with those of different spatial and temporal resolutions, a synergistic retrieval process is proposed to obtain the temperature and humidity profiles at a high frequency under clear-sky conditions based on the optimal estimation method. In this research, using the line-by-line radiative transfer model (LBLRTM) as the forward model for observing simulations, a retrieval experiment was carried out in Qingdao, China, where an AERI is situated. Taking radiosonde data as a reference for comparing the retrieval results of the temperature and humidity profiles of the troposphere, the root-mean-square error (RMSE) of the synergistic retrieval algorithm below 400 hPa is within 2 K for temperature and within 12% for relative humidity. Compared with the GIIRS individual retrieval, the RMSE of temperature and relative humidity for the synergistic method is reduced by 0.13–1.5 K and 2.7–4.4% at 500 hPa, and 0.13–2.1 K and 2.5–7.2% at 900 hPa. Moreover, the forecast index (FI) calculated from the retrieval results shows reasonable consistency with the FIs calculated from the ERA5 reanalysis and from radiosonde data. The synergistic retrieval results have higher temporal resolution than space-based retrieval results and can reflect the changes in the atmospheric state more accurately. Overall, the results demonstrated the promising potential of the synergistic retrieval of temperature and humidity profiles at high accuracy and high temporal resolution under clear-sky conditions from FY-4/GIIRS and AERI.

Funder

Civil Aerospace Technology Advance Research Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3