Evaluation of tropospheric water vapour and temperature profiles retrieved from MetOp-A by the Infrared and Microwave Sounding scheme

Author:

Trent TimORCID,Siddans Richard,Kerridge Brian,Schröder MarcORCID,Scott Noëlle A.,Remedios John

Abstract

Abstract. Since 2007, the Meteorological Operational satellite (MetOp) series of platforms operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) has provided valuable observations of the Earth's surface and atmosphere for meteorological and climate applications. With 15 years of data already collected, the next generation of MetOp satellites will see this measurement record extend to and beyond 2045. Although a primary role is in operational meteorology, tropospheric temperature and water vapour profiles will be key data products produced using infrared and microwave sounding instruments on board. Considering the MetOp data record that will span 40 years, these profiles will form an essential climate data record (CDR) for studying long-term atmospheric changes. Therefore, the performance of these products must be characterized to support the robustness of any current or future analysis. In this study, we validate 9.5 years of profile data produced using the Infrared and Microwave Sounding (IMS) scheme with the European Space Agency (ESA) Water Vapour Climate Change Initiative (WV_cci) project against radiosondes from two different archives. The Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and Analyzed RadioSoundings Archive (ARSA) data records were chosen for the validation exercise to provide the contrast between global observations (ARSA) with sparser characterized climate measurements (GRUAN). Results from this study show that IMS temperature and water vapour profile biases are within 0.5 K and 10 % of the reference for “global” scales. We further demonstrate the difference between diurnal sampling and cloud amount match-ups on observed biases and discuss the implications that sampling also plays on attributing these effects. Finally, we present the first look at the profile bias stability from the IMS product, where we observe global stabilities ranging from −0.32 ± 0.18 to 0.1 ± 0.27 K per decade and −1.76 ± 0.19 to 0.79 ± 0.83 % ppmv (parts per million by volume) per decade for temperature and water vapour profiles, respectively. We further break down the profile stability into diurnal and latitudinal values and relate all observed results to required climate performance. Overall, we find the results from this study demonstrate the real potential for tropospheric water vapour and temperature profile CDRs from the MetOp series of platforms.

Funder

Natural Environment Research Council

European Space Agency

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3