Impact of spaceborne carbon monoxide observations from the S-5P platform on tropospheric composition analyses and forecasts
-
Published:2017-01-24
Issue:2
Volume:17
Page:1081-1103
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Abida Rachid, Attié Jean-Luc, El Amraoui Laaziz, Ricaud PhilippeORCID, Lahoz William, Eskes HenkORCID, Segers Arjo, Curier Lyana, de Haan Johan, Kujanpää JukkaORCID, Nijhuis Albert OudeORCID, Tamminen JohannaORCID, Timmermans Renske, Veefkind Pepijn
Abstract
Abstract. We use the technique of Observing System Simulation Experiments (OSSEs) to quantify the impact of spaceborne carbon monoxide (CO) total column observations from the Sentinel-5 Precursor (S-5P) platform on tropospheric analyses and forecasts. We focus on Europe for the period of northern summer 2003, when there was a severe heat wave episode associated with extremely hot and dry weather conditions. We describe different elements of the OSSE: (i) the nature run (NR), i.e., the truth; (ii) the CO synthetic observations; (iii) the assimilation run (AR), where we assimilate the observations of interest; (iv) the control run (CR), in this study a free model run without assimilation; and (v) efforts to establish the fidelity of the OSSE results. Comparison of the results from AR and the CR, against the NR, shows that CO total column observations from S-5P provide a significant benefit (at the 99 % confidence level) at the surface, with the largest benefit occurring over land in regions far away from emission sources. Furthermore, the S-5P CO total column observations are able to capture phenomena such as the forest fires that occurred in Portugal during northern summer 2003. These results provide evidence of the benefit of S-5P observations for monitoring processes contributing to atmospheric pollution.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference83 articles.
1. Acarreta, J. R., De Haan, J. F., and Stammes P.: Cloud pressure retrieval using the O2-O2 absorption band at 477 nm, J. Geophys. Res., 109, D05204, https://doi.org/10.1029/2003JD003915, 2004. 2. Arnold Jr., C. P. and Dey, C. H.: Observing-systems simulation experiments: Past, present and future, B. Am. Meteorol. Soc., 67, 687–695, 1986. 3. Atlas, R.: Atmospheric observation and experiments to assess their usefulness in data assimilation, J. Meteor. Soc. Jpn., 75, 111–130, 1997. 4. Atlas, R., Emmitt, G. D., Brin, T. E., Ardizzone, J., Jusem, J. C., and Bungato D.: Recent observing system simulation experiments at the NASA DAO, in: Preprints, 7th Symposium on Integrated Observing Systems, Long Beach, CA: American Meteorological Society, 2003. 5. Bannister, R. N.: A review of forecast error covariance statistics in atmospheric variational data assimilation. I: characteristics and measurements of forecast error covariances, Q. J. Roy. Meteor. Soc., 134, 1951–1970, https://doi.org/10.1002/qj.339, 2008.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|