Integrated Influencing Mechanism of Potential Drivers on Seasonal Variability of LST in Kolkata Municipal Corporation, India

Author:

Bera DipankarORCID,Das Chatterjee Nilanjana,Mumtaz FaisalORCID,Dinda Santanu,Ghosh SubrataORCID,Zhao NaORCID,Bera Sudip,Tariq AqilORCID

Abstract

Increasing land surface temperature (LST) is one of the major anthropogenic issues and is significantly threatening the urban areas of the world. Therefore, this study was designed to examine the spatial variations and patterns of LST during the different seasons in relation to influencing factors in Kolkata Municipality Corporation (KMC), a city of India. The spatial distribution of LST was analyzed regarding the different surface types and used 25 influencing factors from 6 categories of variables to explain the variability of LST during the different seasons. All-subset regression and hierarchical partitioning analyses were used to estimate the explanatory potential and independent effects of influencing factors. The results show that high and low LST corresponded to the artificial lands and bodies of water for all seasons. In the individual category regression model, surface properties gave the highest explanatory rate for all seasons. The explanatory rates and the combination of influencing factors with their independent effects on the LST were changed for the different seasons. The explanatory rates of integration of all influencing factors were 89.4%, 81.4%, and 88.7% in the summer, transition, and winter season, respectively. With the decreasing of LST (summer to transition, then to winter) more influencing factors were required to explain the LST. In the integrated regression model, surface properties were the most important factor in summer and winter, and landscape configuration was the most important factor in the transition season. LST is not the result of single categories of influencing factors. Along with the effects of surface properties, socio-economic parameters, landscape compositions and configurations, topographic parameters and pollutant parameters mostly explained the variability of LST in the transition (11.22%) and summer season (15.22%), respectively. These findings can help to take management strategies to reduce urban LST based on local planning.

Funder

Council of Scientific and Industrial Research

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference113 articles.

1. Revision of World Urbanization Prospects 2018,2018

2. An updated MODIS global urban extent product (MGUP) from 2001 to 2018 based on an automated mapping approach

3. An analysis of urban growth trends in the post-economic reforms period in India

4. Urbanization in India https://www.statista.com/statistics/271312/ urbanization-in-india/

5. World Urbanization Prospects 2019,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3