Evaluation of the Performance of the WRF Model in a Hyper-Arid Environment: A Sensitivity Study

Author:

Abida RachidORCID,Addad YacineORCID,Francis DianaORCID,Temimi MarouaneORCID,Nelli NarendraORCID,Fonseca RicardoORCID,Nesterov Oleksandr,Bosc Emmanuel

Abstract

Accurate simulation of boundary layer surface meteorological parameters is essential to achieve good forecasting of weather and atmospheric dispersion. This paper is devoted to a model sensitivity study over a coastal hyper-arid region in the western desert of the United Arab Emirates. This region hosts the Barakah Nuclear Power Plant (BNPP), making it vital to correctly simulate local weather conditions for emergency response in case of an accidental release. We conducted a series of high-resolution WRF model simulations using different combinations of physical schemes for the months January 2019 and June 2019. The simulated results were verified against in-situ meteorological surface measurements available offshore, nearshore, and inland at 12 stations. Several statistical metrics were calculated to rank the performance of the different simulations and a near-to-optimal set of physics options that enhance the performance of a WRF model over different locations in this region has been selected. Additionally, we found that the WRF model performed better in inland locations compared to offshore or nearshore locations, suggesting the important role of dynamical SSTs in mesoscale models. Moreover, morning periods were better simulated than evening ones. The impact of nudging towards station observations resulted in an overall reduction in model errors by 5–15%, which was more marked at offshore and nearshore locations. The sensitivity to grid cell resolution indicated that a spatial resolution of 1 km led to better performance compared to coarser spatial resolutions, highlighting the advantage of high-resolution simulations in which the mesoscale coastal circulation is better resolved.

Funder

Khalifa University of Science and Technology

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3