In situ observed relationships between snow and ice surface skin temperatures and 2 m air temperatures in the Arctic
-
Published:2019-03-29
Issue:3
Volume:13
Page:1005-1024
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Nielsen-Englyst Pia, Høyer Jacob L., Madsen Kristine S.ORCID, Tonboe Rasmus, Dybkjær Gorm, Alerskans Emy
Abstract
Abstract. To facilitate the construction of a satellite-derived 2 m air temperature
(T2 m) product for the snow- and ice-covered regions in the
Arctic, observations from weather stations are used to quantify the
relationship between the T2 m and skin temperature
(Tskin). Multiyear data records of simultaneous Tskin
and T2 m from 29 different in situ sites have been analysed for
five regions, covering the lower and upper ablation zone and the accumulation
zone of the Greenland Ice Sheet (GrIS), sea ice in the Arctic Ocean, and
seasonal snow-covered land in northern Alaska. The diurnal and seasonal
temperature variabilities and the impacts from clouds and wind on the
T2 m–Tskin differences are quantified.
Tskin is often (85 % of the time, all sites weighted equally)
lower than T2 m, with the largest differences occurring when the
temperatures are well below 0 ∘C or when the surface is melting.
Considering all regions, T2 m is on average
0.65–2.65 ∘C higher than Tskin, with the largest
differences for the lower ablation area and smallest differences for
the seasonal snow-covered sites. A negative net surface radiation balance generally cools
the surface with respect to the atmosphere, resulting in a surface-driven
surface air temperature inversion. However, Tskin and
T2 m are often highly correlated, and the two temperatures can
be almost identical (<0.5 ∘C difference), with the smallest
T2–Tskin differences around noon and early afternoon during
spring, autumn and summer during non-melting conditions. In general, the
inversion strength increases with decreasing wind speeds, but for the sites
on the GrIS the maximum inversion occurs at wind speeds of about
5 m s−1 due to the katabatic winds. Clouds tend to reduce the vertical
temperature gradient, by warming the surface, resulting in a mean overcast
T2 m–Tskin difference ranging from −0.08 to
1.63 ∘C, with the largest differences for the sites in the
low-ablation zone and the smallest differences for the seasonal snow-covered
sites. To assess the effect of using cloud-limited infrared satellite
observations, the influence of clouds on temporally averaged
Tskin has been studied by comparing averaged clear-sky
Tskin with averaged all-sky Tskin. To this end, we
test three different temporal averaging windows: 24 h, 72 h and 1 month.
The largest clear-sky biases are generally found when 1-month averages are
used and the smallest clear-sky biases are found for 24 h. In most cases,
all-sky averages are warmer than clear-sky averages, with the smallest bias
during summer when the Tskin range is smallest.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference70 articles.
1. Abermann, J., Hansen, B., Lund, M., Wacker, S., Karami, M., and Cappelen, J.:
Hotspots and key periods of Greenland climate change during the past six
decades, Ambio, 46, 3–11, https://doi.org/10.1007/s13280-016-0861-y, 2017. 2. Ackerman, T. P. and Stokes, G. M.: The Atmospheric Radiation Measurement
Program, Phys. Today, 56, 38–44, https://doi.org/10.1063/1.1554135, 2003. 3. Adolph, A. C., Albert, M. R., and Hall, D. K.: Near-surface temperature
inversion during summer at Summit, Greenland, and its relation to
MODIS-derived surface temperatures, The Cryosphere, 12, 907–920,
https://doi.org/10.5194/tc-12-907-2018, 2018. 4. Ahlstrøm, A., van As, D., Citterio, M., Andersen, S., Fausto, R.,
Andersen, M., Forsberg, R., Stenseng, L., Lintz Christensen, E., and
Kristensen, S. S.: A new Programme for Monitoring the Mass Loss of the
Greenland Ice Sheet, Geol. Surv. Den. Greenl.,
15, 61–64, 2008. 5. Arrhenius, S.: XXXI. On the influence of carbonic acid in the air upon the temperature of the ground, The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 41, 237–276,
https://doi.org/10.1080/14786449608620846, 1896.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|