An Assessment of the Lancaster Sound Polynya Using Satellite Data 1979 to 2022

Author:

Vincent R.F.1

Affiliation:

1. Department of Physics and Space Science, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada

Abstract

Situated between Devon Island and Baffin Island, Lancaster Sound is part of Tallurutiup Imanga, which is in the process of becoming the largest marine conservation area in Canada. The cultural and ecological significance of the region is due, in part, to a recurring polynya in Lancaster Sound. The polynya is demarcated by an ice arch that generally forms in mid-winter and collapses in late spring or early summer. Advanced Very High Resolution imagery from 1979 to 2022 was analyzed to determine the position, formation and collapse of the Lancaster Sound ice arch. The location of the ice arch demonstrates high interannual variability, with 512 km between the eastern and western extremes, resulting in a polynya area that can fluctuate between 6000 km2 and 40,000 km2. The timing of the seasonal ice arch formation and collapse has implications with respect to ice transport through Lancaster Sound and the navigability of the Northwest Passage. The date of both the formation and collapse of the ice arch is variable from season to season, with the formation observed between November and April and collapse usually occurring in June or July. A linear trend from 1979 to 2022 indicates that seasonal ice arch duration has declined from 150 to 102 days. The reduction in ice arch duration is a result of earlier collapse dates over the study period and later formation dates, particularly from 1979 to 2000. Lancaster Sound normally freezes west to east each season until the ice arch is established, but there is no statistical relationship between the ice arch location and duration. Satellite surface temperature mapping of the region indicates that the polynya is characterized by sub-resolution leads during winter.

Funder

Canadian Defence Academy Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3