The importance of regional sea-ice variability for the coastal climate and near-surface temperature gradients in Northeast Greenland
-
Published:2023-09-01
Issue:3
Volume:4
Page:747-771
-
ISSN:2698-4016
-
Container-title:Weather and Climate Dynamics
-
language:en
-
Short-container-title:Weather Clim. Dynam.
Author:
Shahi SonikaORCID, Abermann JakobORCID, Silva TiagoORCID, Langley Kirsty, Larsen Signe HillerupORCID, Mastepanov Mikhail, Schöner Wolfgang
Abstract
Abstract. The climate in Northeast Greenland is shaped by complex topography and interaction with the cryosphere. Since the regional ecosystem processes are sensitive to atmospheric stability conditions, it is crucial to capture this complexity including adequate cryosphere coupling. This study uses an observational dataset from the Zackenberg region (Northeast Greenland) to investigate the local- and large-scale factors that determine the slope temperature gradient (STG), i.e., the temperature gradient along the mountain slope. A synthesis of automated weather stations, reanalysis, and a regional climate model simulations was used. For all seasons, our results show that snow cover and near-fjord ice conditions are the dominating factors governing the temporal evolution of the STG in the Zackenberg region. Considering large-scale drivers of the STG, we find that temperature inversions are associated with positive 500 hPa geopotential height and surface pressure anomalies over East Greenland. A strong connection between fractional sea-ice cover (SIF) in the Greenland Sea and the terrestrial climate of the Zackenberg region is found. A positive SIF anomaly coincides with a shallow STG, i.e., more positive (inversions) or less negative than the mean STG, since the temperature at the bottom of the valley decreases more than at the top. For example, the mean STG varies by ∼4 ∘C km−1 for a corresponding ∼27 % change in SIF. Reduction in temperature and precipitation (snowfall) during the days with high sea ice also affects the surface mass balance (SMB) of nearby glaciers and ice caps as shown for the A. P. Olsen Ice Cap. During summer, days with high SIF are associated with a positive SMB anomaly in the ablation area (∼16 mm w.e. d−1; indicating less melt) and a negative anomaly in the accumulation area (∼-0.3 mm w.e. d−1; indicating less accumulation). Based on our findings, we speculate that the local conditions in the Zackenberg region associated with anomalously low sea ice (i.e., a decrease in atmospheric stability) will be more prominent in the future with climate warming.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference130 articles.
1. Abermann, J., Hansen, B., Lund, M., Wacker, S., Karami, M., and Cappelen, J.: Hotspots and key periods of Greenland climate change during the past six
decades, Ambio, 46, 3–11, https://doi.org/10.1007/s13280-016-0861-y, 2017. 2. Alley, R. B., Dupont, T. K., Parizek, B. R., Anandakrishnan, S., Lawson, D.
E., Larson, G. J., and Evenson, E. B.: Outburst flooding and the initiation
of ice-stream surges in response to climatic cooling: A hypothesis,
Geomorphology, 75, 76–89, https://doi.org/10.1016/j.geomorph.2004.01.011, 2006. 3. Anderson, P. S.: A Method for Rescaling Humidity Sensors at Temperatures
Well below Freezing, J. Atmos. Ocean Tech., 11, 1388–1391, 1994. 4. Arlot, S., Celisse, A., and Harchaoui, Z.: A Kernel Multiple Change-point
Algorithm via Model Selection, J. Mach. Learn. Res., 20, 1–56, 2019. 5. Arltová, M. and Fedorová, D.: Selection of Unit Root Test on the
Basis of Time Series Length and Value of AR(1) Parameter, Statistika, 96, 47–64, 2016.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|