Estimating trends in the global mean temperature record
-
Published:2017-06-09
Issue:1
Volume:3
Page:33-53
-
ISSN:2364-3587
-
Container-title:Advances in Statistical Climatology, Meteorology and Oceanography
-
language:en
-
Short-container-title:Adv. Stat. Clim. Meteorol. Oceanogr.
Author:
Poppick Andrew,Moyer Elisabeth J.,Stein Michael L.
Abstract
Abstract. Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the important characteristics of internal variability, can result in more accurate uncertainty statements about trends.
Funder
Directorate for Mathematical and Physical Sciences Division of Social and Economic Sciences
Publisher
Copernicus GmbH
Subject
Applied Mathematics,Atmospheric Science,Statistics and Probability,Oceanography
Reference67 articles.
1. Aldrin, M., Holden, M., Guttorp, P., Skeie, R. B., Myhre, G., and Berntsen, T. K.: Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content, Environmetrics, 23, 253–271, 2012. 2. Armour, K. C., Bitz, C. M., and Roe, G. H.: Time-varying climate sensitivity from regional feedbacks, J. Climate, 26, 4518–4534, 2013. 3. Arrhenius, S.: On the influence of carbonic acid in the air upon the temperature of the ground, Philos. Mag. 5, 41, 237–276, 1896. 4. Beran, J., Feng, Y., Ghosh, S., and Kulik, R.: Long-memory processes, Springer, New York, 2013. 5. Bloch-Johnson, J., Pierrehumbert, R. T., and Abbot, D. S.: Feedback temperature dependence determines the risk of high warming, Geophys. Res. Lett., 42, 4973–4980, 2015.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|