An observation-based scaling model for climate sensitivity estimates and global projections to 2100

Author:

Hébert RaphaëlORCID,Lovejoy Shaun,Tremblay Bruno

Abstract

AbstractWe directly exploit the stochasticity of the internal variability, and the linearity of the forced response to make global temperature projections based on historical data and a Green’s function, or Climate Response Function (CRF). To make the problem tractable, we take advantage of the temporal scaling symmetry to define a scaling CRF characterized by the scaling exponent H, which controls the long-range memory of the climate, i.e. how fast the system tends toward a steady-state, and an inner scale $$\tau \approx 2$$ τ 2   years below which the higher-frequency response is smoothed out. An aerosol scaling factor and a non-linear volcanic damping exponent were introduced to account for the large uncertainty in these forcings. We estimate the model and forcing parameters by Bayesian inference which allows us to analytically calculate the transient climate response and the equilibrium climate sensitivity as: $$1.7^{+0.3} _{-0.2}$$ 1 . 7 - 0.2 + 0.3   K and $$2.4^{+1.3} _{-0.6}$$ 2 . 4 - 0.6 + 1.3   K respectively (likely range). Projections to 2100 according to the RCP 2.6, 4.5 and 8.5 scenarios yield warmings with respect to 1880–1910 of: $$1.5^{+0.4}_{-0.2}K$$ 1 . 5 - 0.2 + 0.4 K , $$2.3^{+0.7}_{-0.5}$$ 2 . 3 - 0.5 + 0.7   K and $$4.2^{+1.3}_{-0.9}$$ 4 . 2 - 0.9 + 1.3   K. These projection estimates are lower than the ones based on a Coupled Model Intercomparison Project phase 5 multi-model ensemble; more importantly, their uncertainties are smaller and only depend on historical temperature and forcing series. The key uncertainty is due to aerosol forcings; we find a modern (2005) forcing value of $$[-1.0, -0.3]\, \,\,\mathrm{Wm} ^{-2}$$ [ - 1.0 , - 0.3 ] Wm - 2 (90 % confidence interval) with median at $$-0.7 \,\,\mathrm{Wm} ^{-2}$$ - 0.7 Wm - 2 . Projecting to 2100, we find that to keep the warming below 1.5 K, future emissions must undergo cuts similar to RCP 2.6 for which the probability to remain under 1.5 K is 48 %. RCP 4.5 and RCP 8.5-like futures overshoot with very high probability.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

H2020 European Research Council

Office of Polar Programs

Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3