Dating hiatuses: a statistical model of the recent slowdown in global warming and the next one

Author:

Miller J. IsaacORCID,Nam Kyungsik

Abstract

Abstract. Much has been written about the so-called hiatus or pause in global warming, also known as the stasis period, the start of which is typically dated to 1998. HadCRUT4 global mean temperatures slightly decreased over the 1998–2013 period, although a simple statistical model predicts that they should have grown by 0.016 ∘C/yr, in proportion to the increases in the concentrations of well-mixed greenhouse gases (WMGHGs) and ozone. We employ a statistical approach to assess the contributions of model forcings and natural variability to the hiatus. Our point estimates suggest that none of the model forcings explain more than one-third of the missing heat, accounting for the upper bound of the confidence interval on the effect of tropospheric aerosols, which is the most prominent yet most uncertainly measured of the model forcings that could explain the missing heat. The El Niño–Southern Oscillation (ENSO) explains up to about one-third of the missing heat, and two-thirds and possibly up to 81 % is explained by the unusually high temperature of 1998. Looking forward, the simple model also fails to explain the large increases since then (0.087 ∘C/yr from 2013 to 2016). This period coincides with another El Niño, but the ENSO fails to satisfactorily account for the increase. Instead, we propose a semiparametric cointegrating statistical model that augments an energy balance model with a novel multi-basin measure of the oceans' multidecadal temperature cycles. The model partially explains the recent slowdown and explains all of the subsequent warming. The natural cycle suggests the possibility – depending in part on the rate of increase of WMGHG concentrations – of a much longer hiatus over the period from roughly 2023 to 2061, with potentially important implications for policy evaluation.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3