Nitrogen oxides in the boundary layer and free troposphere at the Mt. Bachelor Observatory

Author:

Reidmiller D. R.,Jaffe D. A.,Fischer E. V.,Finley B.

Abstract

Abstract. Nitrogen oxide (NOx=NO+NO2) observations were made at the Mt. Bachelor Observatory in central Oregon, USA (MBO; 2.73 km above sea level) during one autumn and three springtime (15 April–20 May) periods. This is the first study to discuss interannual variability in NOx for this region. NOx concentrations (mean±1σ) for spring 2007, 2008 and 2009 were 119±65, 117±65, and 91±54 pptv, respectively. The difference in mean mixing ratios between 2007 and 2008 is not statistically significant, whereas the difference between these years and 2009 is significant (p<0.01). We attribute the decline in NOx from 2007–2008 to 2009 to changes in free tropospheric synoptic conditions over the Northeast Pacific and trans-Pacific transport pathways during spring 2009. In 2009, there were: (1) higher geopotential heights over the Gulf of Alaska, (2) warmer temperatures over the Aleutian Islands/Gulf of Alaska and (3) much weaker winds throughout the North Pacific. During the autumn 2008 campaign, NOx concentrations (mean±1σ) were 175±548 pptv. The highly non-normal distribution of data (skewness coefficient of 19.1 vs. 2.5, 2.8 and 2.4 in spring 2007, 2008 and 2009, respectively) resulted from periods of very high NOx levels. Using MODIS Rapid Response (Aqua and Terra) results, we show that during autumn our site can be heavily influenced by wildfires in western North America. This is in contrast to springtime, when the smaller positive (i.e., right) tail of the NOx distribution is driven largely by Asian long-range transport (ALRT) events. We developed a novel means of segregating boundary layer (BL)-influenced vs. free tropospheric (FT) air. During spring 2008 we collected "chairlift soundings" of temperature, relative humidity and pressure in an effort to better understand the diurnal pattern of a BL influence at our summit station. Results from this experiment revealed that, on average, a BL influence begins around 10:00 PDT (UTC – 07:00 h) in spring. Using this information to isolate FT air, we characterize probable pollution sources and synoptic conditions for the top 20 FT NOx events over three spring campaigns. Half (n=10) of these 20 events were determined to be "Imported" events characterized by anomalously: (1) high geopotential heights off the west coast of North America, (2) warm temperatures stretching from the Aleutian Islands to Baja California, and (3) strong southwesterly winds in the Asian outflow region. Five events exhibited an influence from the North American continent. These events are characterized by very strong cyclonic behavior off the northwestern USA coast.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference73 articles.

1. Balzani Lööv, J. M., Henne, S., Legreid, G., Staehelin, J., Reimann, S., Prévôt, Steinbacher, M., and Vollmer, M. K.: Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfaujoch (3580 m a.s.l.), J. Geophys. Res., 113, D22305, https://doi.org/10.1029/2007JD009751, 2008.

2. Berg, L. K. and Stull, R. B.: Parameterization of joint frequency distributions of potential temperature and water vapor mixing ratio in the daytime convective boundary layer, J. Atmos. Sci., 61(7), 813–828, 2004.

3. Bertram, T. H.: Observation-based Constraints for the Source Strengths, Transport and Partitioning of Reactive Nitrogen on Regional and Global Scales, PhD dissertation, Department of Chemistry, University of California – Berkeley, December 2006.

4. Brasseur, G. P., Orlando, J. J., and Tyndall, G. S.: Atmospheric Chemistry and Global Change, Oxford University Press, New York, 654 pp., 1999.

5. Buhr, M.: Measurement of NO2 in Ambient Air Using a Solid-State Photolytic Converter, Paper number 78, Sonoma Technology, Inc., Petaluma, California, USA, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3