Contribution of Asian emissions to upper tropospheric CO over the remote Pacific
-
Published:2022-06-03
Issue:11
Volume:22
Page:7193-7206
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Smoydzin Linda, Hoor PeterORCID
Abstract
Abstract. Upon analysing the global distribution of the highest 2 % of daily CO mixing ratios at 400 hPa derived from the MOPITT satellite instrument for 20 years (2000–2019), we very regularly detect
regions with very high CO values (i.e. mixing ratios belonging to the globally highest 2 %)
over the remote Northern Hemispheric (NH) Pacific.
Such events of elevated CO over the upper tropospheric NH Pacific occur throughout the year
with surprisingly high regularity and frequency (70 % of all days during winter, 80 % of all days during spring).
During winter, most of these pollution events are detected over the north-eastern and central
NH Pacific, during spring over the central NH Pacific, and during summer over the western
NH Pacific. We detect most pollution events during spring. To link each individual pollution event detected by the 2 % filtering method with a specific
CO source region, we perform trajectory calculations using MPTRAC, a Lagrangian transport
model. To analyse transport pathways and uplift mechanisms, we combine MOPITT data, the
trajectory calculations, and ERA-Interim reanalysis data. It becomes apparent that air masses
from China that are lifted along a frontal system into the free troposphere are the major CO source
throughout the year.
The contributions of other source regions and uplift mechanisms show a strong seasonal cycle: NE Asia in combination with upward transport of air masses in the warm conveyor belt of a midlatitude cyclone is a significant CO source region during winter, spring, and summer, while India is an important source region mainly during spring and summer and SE Asia mainly during spring.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference58 articles.
1. Bey, I., Jacob, D. J., Logan, J. A., and Yantosca, R. M.: Asian chemical
outflow to the Pacific in spring: Origins, pathways, and budgets, J. Geophys. Res.-Atmos., 106, 23097–23113,
https://doi.org/10.1029/2001JD000806, 2001. a 2. Breeden, M. L., Butler, A. H., Albers, J. R., Sprenger, M., and Langford, A. O.: The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America, Atmos. Chem. Phys., 21, 2781–2794, https://doi.org/10.5194/acp-21-2781-2021, 2021. a, b 3. Chen, Y., Zhao, C., Qiang, Z., Deng, Z., Huang, M., and Ma, X.: Aircraft study
of Mountain Chimney Effect of Beijing, China, J. Geophys. Res., 114, 1–10, https://doi.org/10.1029/2008JD010610, 2009. a 4. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. a 5. Deeter, M., Edwards, D., Gille, J., and Worden, H.: Information content of
MOPITT CO profile retrievals: Temporal and geographical variability, J. Geophys. Res.-Atmos., 120, 12723–12738,
https://doi.org/10.1002/2015JD024024, 2015. a
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|