Accelerating Lagrangian transport simulations on graphics processing units: performance optimizations of Massive-Parallel Trajectory Calculations (MPTRAC) v2.6

Author:

Hoffmann LarsORCID,Haghighi Mood KavehORCID,Herten AndreasORCID,Hrywniak MarkusORCID,Kraus Jiri,Clemens JanORCID,Liu MingzhaoORCID

Abstract

Abstract. Lagrangian particle dispersion models are indispensable tools for the study of atmospheric transport processes. However, Lagrangian transport simulations can become numerically expensive when large numbers of air parcels are involved. To accelerate these simulations, we made considerable efforts to port the Massive-Parallel Trajectory Calculations (MPTRAC) model to graphics processing units (GPUs). Here we discuss performance optimizations of the major bottleneck of the GPU code of MPTRAC, the advection kernel. Timeline, roofline, and memory analyses of the baseline GPU code revealed that the application is memory-bound, and performance suffers from near-random memory access patterns. By changing the data structure of the horizontal wind and vertical velocity fields of the global meteorological data driving the simulations from structure of arrays (SoAs) to array of structures (AoSs) and by introducing a sorting method for better memory alignment of the particle data, performance was greatly improved. We evaluated the performance on NVIDIA A100 GPUs of the Jülich Wizard for European Leadership Science (JUWELS) Booster module at the Jülich Supercomputing Center, Germany. For our largest test case, transport simulations with 108 particles driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis, we found that the runtime for the full set of physics computations was reduced by 75 %, including a reduction of 85 % for the advection kernel. In addition to demonstrating the benefits of code optimization for GPUs, we show that the runtime of central processing unit (CPU-)only simulations is also improved. For our largest test case, we found a runtime reduction of 34 % for the physics computations, including a reduction of 65 % for the advection kernel. The code optimizations discussed here bring the MPTRAC model closer to applications on upcoming exascale high-performance computing systems and will also be of interest for optimizing the performance of other models using particle methods.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3