Modification of a conventional photolytic converter for improving aircraft measurements of NO<sub>2</sub> via chemiluminescence
-
Published:2021-10-20
Issue:10
Volume:14
Page:6759-6776
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Nussbaumer Clara M.ORCID, Parchatka Uwe, Tadic IvanORCID, Bohn BirgerORCID, Marno DanielORCID, Martinez Monica, Rohloff Roland, Harder HartwigORCID, Kluge Flora, Pfeilsticker KlausORCID, Obersteiner FlorianORCID, Zöger MartinORCID, Doerich Raphael, Crowley John N.ORCID, Lelieveld JosORCID, Fischer Horst
Abstract
Abstract. Nitrogen oxides (NOx≡NO+NO2) are centrally involved in the photochemical processes taking place in the Earth's atmosphere. Measurements of NO2, particularly in remote areas where concentrations are of the order of parts per trillion by volume (pptv), are still a challenge and subject to extensive research. In this study, we present NO2 measurements via photolysis–chemiluminescence during the research aircraft campaign CAFE Africa (Chemistry of the Atmosphere – Field Experiment in Africa) 2018 around Cabo Verde and the results of laboratory experiments to characterize the photolytic converter used. We find the NO2 reservoir species MPN (methyl peroxy nitrate) to produce the only relevant thermal interference in the converter under the operating conditions during CAFE Africa. We identify a memory effect within the conventional photolytic converter (type 1) associated with high NO concentrations and rapidly changing water vapor concentrations, accompanying changes in altitude during aircraft measurements, which is due to the porous structure of the converter material. As a result, NO2 artifacts, which are amplified by low conversion efficiencies, and a varying instrumental background adversely affect the NO2 measurements. We test and characterize an alternative photolytic converter (type 2) made from quartz glass, which improves the reliability of NO2 measurements in laboratory and field studies.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference77 articles.
1. Alam, M. S., Crilley, L. R., Lee, J. D., Kramer, L. J., Pfrang, C., Vázquez-Moreno, M., Ródenas, M., Muñoz, A., and Bloss, W. J.: Interference from alkenes in chemiluminescent NOx measurements, Atmos. Meas. Tech., 13, 5977–5991, https://doi.org/10.5194/amt-13-5977-2020, 2020. a 2. Andersen, S. T., Carpenter, L. J., Nelson, B. S., Neves, L., Read, K. A., Reed, C., Ward, M., Rowlinson, M. J., and Lee, J. D.: Long-term NOx measurements in the remote marine tropical troposphere, Atmos. Meas. Tech., 14, 3071–3085, https://doi.org/10.5194/amt-14-3071-2021, 2021. a, b, c 3. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. a, b 4. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. a 5. Bahta, A., Simonaitis, R., and Heicklen, J.: Thermal decomposition kinetics of methyl peroxynitrate (CH3O2NO2), J. Phys. Chem.-US, 86, 1849–1853, 1982. a
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|