Roll vortices induce new particle formation bursts in the planetary boundary layer
-
Published:2020-10-21
Issue:20
Volume:20
Page:11841-11854
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Lampilahti Janne, Manninen Hanna Elina, Leino Katri, Väänänen Riikka, Manninen Antti, Buenrostro Mazon StephanyORCID, Nieminen TuomoORCID, Leskinen Matti, Enroth JoonasORCID, Bister Marja, Zilitinkevich SergejORCID, Kangasluoma JuhaORCID, Järvinen HeikkiORCID, Kerminen Veli-MattiORCID, Petäjä TuukkaORCID, Kulmala MarkkuORCID
Abstract
Abstract. Recent studies have shown the importance of new particle formation (NPF) to global cloud condensation nuclei (CCN) production, as well as to air
pollution in megacities. In addition to the necessary presence of low-volatility vapors that can form new aerosol particles, both numerical and
observational studies have shown that the dynamics of the planetary boundary layer (BL) plays an important role in NPF. Evidence from field
observations suggests that roll vortices might be favorable for inducing NPF in a convective BL. However, direct observations and estimates of the
potential importance of this phenomenon to the production of new aerosol particles are lacking. Here we show that rolls frequently induce NPF bursts
along the horizontal circulations and that the small clusters and particles originating from these localized bursts grow in size similar to
particles typically ascribed to atmospheric NPF that occur almost homogeneously at a regional scale. We outline a method to identify roll-induced
NPF from measurements and, based on the collected data, estimate the impact of roll vortices on the overall aerosol particle production due to NPF
at a boreal forest site (83 % ± 34 % and 26 % ± 8 % overall enhancement in particle formation for 3 and 10 nm
particles, respectively). We conclude that the formation of roll vortices should be taken into account when estimating particle number budgets in
the atmospheric BL.
Funder
Russian Science Foundation FP7 Environment Academy of Finland Horizon 2020 European Research Council
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Aalto, P., Hämeri, K., Becker, E., Weber, R., Salm, J., Mäkelä, J. M., Hoell, C., O'Dowd, C. D., Hansson, H.-C., Väkevä, M., Koponen, I. K., Buzorius, G., and Kulmala, M.:
Physical characterization of aerosol particles during nucleation events,
Tellus B,
53, 344–358, https://doi.org/10.3402/tellusb.v53i4.17127, 2001. 2. Atkinson, B. W. and Wu Zhang, J.:
Mesoscale shallow convection in the atmosphere,
Rev. Geophys.,
34, 403–431, https://doi.org/10.1029/96RG02623, 1996. 3. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.:
Clouds and Aerosols, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 571–658,
available at: http://www.climatechange2013.org (last access:
15 October 2020), 2013. 4. Brooks, I. M. and Rogers, D. P.:
Aircraft Observations of Boundary Layer Rolls off the Coast of California,
J. Atmos. Sci.,
54, 1834–1849, https://doi.org/10.1175/1520-0469(1997)054<1834:AOOBLR>2.0.CO;2, 1997. 5. Buzorius, G., Rannik, Ü., Mäkelä, J. M., Keronen, P., Vesala, T., and Kulmala, M.:
Vertical aerosol fluxes measured by the eddy covariance method and deposition of nucleation mode particles above a Scots pine forest in southern Finland,
J. Geophys. Res.-Atmos.,
105, 19905–19916, https://doi.org/10.1029/2000JD900108, 2000.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|