Measurement report: Atmospheric new particle formation at a peri-urban site in Lille, northern France
-
Published:2023-01-05
Issue:1
Volume:23
Page:183-201
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Crumeyrolle SuzanneORCID, Kontkanen Jenni S. S., Rose ClémenceORCID, Velazquez Garcia Alejandra, Bourrianne Eric, Catalfamo Maxime, Riffault VéroniqueORCID, Tison Emmanuel, Ferreira de Brito JoelORCID, Visez NicolasORCID, Ferlay Nicolas, Auriol Frédérique, Chiapello IsabelleORCID
Abstract
Abstract. Formation of ultrafine particles (UFPs) in the urban atmosphere is expected to be less favored than in the rural atmosphere due to the high existing particle surface area acting as a sink for newly formed particles. Despite large condensation sink (CS) values, previous comparative studies between rural and urban sites reported higher frequency of new particle formation (NPF) events over urban sites in comparison to background sites as well as higher particle formation and growth rates attributed to the higher concentration of condensable species. The present study aims at a better understanding the environmental factors favoring, or disfavoring, atmospheric NPF over Lille, a large city in the north of France, and to analyze their impact on particle number concentration using a 4-year long-term dataset. The results highlight a strong seasonal variation of NPF occurrences with a maximum frequency observed during spring (27 events) and summer (53 events). It was found that high temperature (T>295 K), low relative humidity (RH <45 %), and high solar radiation are ideal to observe NPF events over Lille. Relatively high CS values (i.e., ∼2×10-2 s−1) are reported during event days suggesting that high CS does not inhibit the occurrence of NPF over the ATmospheric Observations in LiLLE (ATOLL) station. Moreover, the particle growth rate was positively correlated with temperatures most probably due to higher emission of precursors. Finally, the nucleation strength factor (NSF) was calculated to highlight the impact of those NPF events on particle number concentrations. NSF reached a maximum of four in summer, evidencing a huge contribution of NPF events to particle number concentration at this time of the year.
Funder
Agence Nationale de la Recherche Région Hauts-de-France Ministère de l'Enseignement Supérieur et de la Recherche European Regional Development Fund
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference94 articles.
1. Atmo Hauts-de-France: NOx data, https://data-atmo-hdf.opendata.arcgis.com, last access: 3 March 2022. 2. Barreira, L. M. F., Helin, A., Aurela, M., Teinilä, K., Friman, M., Kangas, L., Niemi, J. V., Portin, H., Kousa, A., Pirjola, L., Rönkkö, T., Saarikoski, S., and Timonen, H.: In-depth characterization of submicron particulate matter inter-annual variations at a street canyon site in northern Europe, Atmos. Chem. Phys., 21, 6297–6314, https://doi.org/10.5194/acp-21-6297-2021, 2021. 3. Berland, K., Rose, C., Pey, J., Culot, A., Freney, E., Kalivitis, N., Kouvarakis, G., Cerro, J. C., Mallet, M., Sartelet, K., Beckmann, M., Bourriane, T., Roberts, G., Marchand, N., Mihalopoulos, N., and Sellegri, K.: Spatial extent of new particle formation events over the Mediterranean Basin from multiple ground-based and airborne measurements, Atmos. Chem. Phys., 17, 9567–9583, https://doi.org/10.5194/acp-17-9567-2017, 2017. 4. Boichu, M., Favez, O., Riffault, V., Petit, J.-E., Zhang, Y., Brogniez, C., Sciare, J., Chiapello, I., Clarisse, L., Zhang, S., Pujol-Söhne, N., Tison, E., Delbarre, H., and Goloub, P.: Large-scale particulate air pollution and chemical fingerprint of volcanic sulfate aerosols from the 2014–2015 Holuhraun flood lava eruption of Bárðarbunga volcano (Iceland), Atmos. Chem. Phys., 19, 14253–14287, https://doi.org/10.5194/acp-19-14253-2019, 2019. 5. Bousiotis, D., Dall'Osto, M., Beddows, D. C. S., Pope, F. D., and Harrison, R. M.: Analysis of new particle formation (NPF) events at nearby rural, urban background and urban roadside sites, Atmos. Chem. Phys., 19, 5679–5694, https://doi.org/10.5194/acp-19-5679-2019, 2019.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|