Wildfire smoke in the lower stratosphere identified by in situ CO observations
-
Published:2020-11-19
Issue:22
Volume:20
Page:13985-14003
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Hooghiem Joram J. D., Popa Maria ElenaORCID, Röckmann ThomasORCID, Grooß Jens-UweORCID, Tritscher InesORCID, Müller RolfORCID, Kivi RigelORCID, Chen HuilinORCID
Abstract
Abstract. Wildfires emit large quantities of aerosols and trace gases, which occasionally reach the lower stratosphere. In August 2017, several pyro-cumulonimbus events injected a large amount of smoke into the stratosphere, observed by lidar and satellites. Satellite observations are in general the main method of detecting these events since in situ aircraft- or balloon-based measurements of atmospheric composition at higher altitudes are not made frequently enough. This work presents accidental balloon-borne trace gas observations of wildfire smoke in the lower stratosphere, identified by enhanced CO mole fractions at approximately 13.6 km. In addition to CO mole fractions, CO2 mole fractions and isotopic composition of CO (δ13C and δ18O) have been measured in air samples, from both the wildfire plume and background, collected using an AirCore and a lightweight stratospheric air sampler (LISA) flown on a weather balloon from Sodankylä (4–7 September 2017; 67.37∘ N, 26.63∘ E; 179 m a.m.s.l.), Finland. The greenhouse gas enhancement ratio (ΔCO:ΔCO2) and the isotopic signature based on δ13C(CO) and δ18O(CO) independently identify wildfire emissions as the source of the stratospheric CO enhancement. Back-trajectory analysis was performed with the Chemical Lagrangian Model of the Stratosphere (CLaMS), tracing the smoke's origin to wildfires in British Columbia with an injection date of 12 August 2017. The trajectories are corrected for vertical displacement due to heating of the wildfire aerosols, by observations made by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. Knowledge of the age of the smoke allowed for a correction of the enhancement ratio, ΔCO:ΔCO2, for the chemical removal of CO by OH. The stable isotope observations were used to estimate the amount of tropospheric air in the plume at the time of observation to be about 45±21 %. Finally, the plume extended over 1 km in altitude, as inferred from the observations.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference68 articles.
1. Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an
updated assessment, Atmos. Chem. Phys., 19, 8523–8546,
https://doi.org/10.5194/acp-19-8523-2019, 2019. a 2. Andreae, M. O., Artaxo, P., Fischer, H., Freitas, S. R., Grégoire, J.-M.,
Hansel, A., Hoor, P., Kormann, R., Krejci, R., Lange, L., Lelieveld, J.,
Lindinger, W., Longo, K., Peters, W., de Reus, M., Scheeren, B., Silva
Dias, M. A. F., Ström, J., van Velthoven, P. F. J., and Williams, J.:
Transport of biomass burning smoke to the upper troposphere by deep
convection in the equatorial region, Geophys. Res. Lett., 28,
951–954, https://doi.org/10.1029/2000GL012391, 2001. a, b, c, d, e, f 3. Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig,
M., Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian
wildfire smoke in the stratosphere over central Europe on 21–22 August 2017,
Atmos. Chem. Phys., 18, 11831–11845,
https://doi.org/10.5194/acp-18-11831-2018, 2018. a 4. Baars, H., Ansmann, A., Ohneiser, K., Haarig, M., Engelmann, R., Althausen, D.,
Hanssen, I., Gausa, M., Pietruczuk, A., Szkop, A., Stachlewska, I. S., Wang,
D., Reichardt, J., Skupin, A., Mattis, I., Trickl, T., Vogelmann, H.,
Navas-Guzmán, F., Haefele, A., Acheson, K., Ruth, A. A., Tatarov, B.,
Müller, D., Hu, Q., Podvin, T., Goloub, P., Veselovskii, I., Pietras,
C., Haeffelin, M., Fréville, P., Sicard, M., Comerón, A.,
Fernández García, A. J., Molero Menéndez, F.,
Córdoba-Jabonero, C., Guerrero-Rascado, J. L., Alados-Arboledas, L.,
Bortoli, D., Costa, M. J., Dionisi, D., Liberti, G. L., Wang, X., Sannino,
A., Papagiannopoulos, N., Boselli, A., Mona, L., D'Amico, G., Romano,
S., Perrone, M. R., Belegante, L., Nicolae, D., Grigorov, I., Gialitaki, A.,
Amiridis, V., Soupiona, O., Papayannis, A., Mamouri, R.-E., Nisantzi, A.,
Heese, B., Hofer, J., Schechner, Y. Y., Wandinger, U., and Pappalardo, G.:
The unprecedented 2017–2018 stratospheric smoke event: decay phase and
aerosol properties observed with the EARLINET, Atmos. Chem.
Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, 2019. a 5. Bergamaschi, P., Brenninkmeijer, C. A., Hahn, M., Röckmann, T., Scharffe,
D. H., Crutzen, P. J., Elansky, N. F., Belikov, I. B., Trivett, N. B., and
Worthy, D. E.: Isotope analysis based source identification for atmospheric
CH4 and CO sampled across Russia using the Trans-Siberian railroad,
J. Geophys. Res.-Atmos., 103, 8227–8235,
https://doi.org/10.1029/97JD03738, 1998. a, b, c
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|