The unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET

Author:

Baars HolgerORCID,Ansmann Albert,Ohneiser Kevin,Haarig MoritzORCID,Engelmann Ronny,Althausen Dietrich,Hanssen Ingrid,Gausa Michael,Pietruczuk AleksanderORCID,Szkop Artur,Stachlewska Iwona S.ORCID,Wang Dongxiang,Reichardt Jens,Skupin Annett,Mattis Ina,Trickl Thomas,Vogelmann Hannes,Navas-Guzmán FranciscoORCID,Haefele Alexander,Acheson Karen,Ruth Albert A.ORCID,Tatarov Boyan,Müller DetlefORCID,Hu Qiaoyun,Podvin Thierry,Goloub Philippe,Veselovskii Igor,Pietras Christophe,Haeffelin Martial,Fréville Patrick,Sicard MichaëlORCID,Comerón AdolfoORCID,Fernández García Alfonso Javier,Molero Menéndez FranciscoORCID,Córdoba-Jabonero CarmenORCID,Guerrero-Rascado Juan LuisORCID,Alados-Arboledas LucasORCID,Bortoli DanieleORCID,Costa Maria JoãoORCID,Dionisi DavideORCID,Liberti Gian Luigi,Wang Xuan,Sannino Alessia,Papagiannopoulos NikolaosORCID,Boselli Antonella,Mona Lucia,D'Amico GiuseppeORCID,Romano Salvatore,Perrone Maria Rita,Belegante Livio,Nicolae Doina,Grigorov Ivan,Gialitaki AnnaORCID,Amiridis VassilisORCID,Soupiona OuraniaORCID,Papayannis AlexandrosORCID,Mamouri Rodanthi-ElisavethORCID,Nisantzi ArgyroORCID,Heese BirgitORCID,Hofer JulianORCID,Schechner Yoav Y.,Wandinger Ulla,Pappalardo Gelsomina

Abstract

Abstract. Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm–pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22–23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21–23 August 2017 to 0.005–0.03 until 5–10 September and was mainly 0.003–0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001–0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50–200 Mm−1 until the beginning of September and on the order of 1 Mm−1 (0.5–5 Mm−1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05–0.5 µg m−3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50–500 L−1 until the first days in September and afterwards 5–50 L−1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of −55 ∘C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15–0.25 (August–September) to values of 0.05–0.10 (October–November) and < 0.05 (December–January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32–35∘ N, that ascended from heights of about 18–19 to 22–23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.

Funder

Horizon 2020

European Space Agency

European Regional Development Fund

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference70 articles.

1. Abalos, M., Legras, B., Ploeger, F., and Randel, W. J.: Evaluating the advective Brewer‐Dobson circulation in three reanalyses for the period 1979–2012, J. Geophys. Res.-Atmos., 120, 7534– 7554. https://doi.org/10.1002/2015JD023182, 2015. a

2. Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A., Müller, D., and Komppula, M.: Portable Raman Lidar PollyXT for Automated Profiling of Aerosol Backscatter, Extinction, and Depolarization, J. Atmos. Ocean. Tech., 26, 2366–2378, https://doi.org/10.1175/2009JTECHA1304.1, 2009. a

3. Ansmann, A., Mattis, I., Wandinger, U., Wagner, F., Reichardt, J., and Deshler, T.: Evolution of the Pinatubo Aerosol: Raman Lidar Observations of Particle Optical Depth, Effective Radius, Mass, and Surface Area over Central Europe at 53.48∘&thinsp;N, J. Atmos. Sci., 54, 2630–2641, https://doi.org/10.1175/1520-0469(1997)054&lt;2630:EOTPAR&gt;2.0.CO;2, 1997. a

4. Ansmann, A., Tesche, M., Seifert P, Groß, S., Freudenthaler, V., Apituley, A., Wilson, K. M., Serikov, I., Linné, H., Heinold, B., Hiebsch, A., Schnell, F., Schmidt, J., Mattis, I., Wandinger, U., and Wiegner, M.: Ash and fine–mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010, J. Geophys. Res., 116, D00U02, https://doi.org/10.1029/2010JD015567, 2011. a

5. Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig, M., Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017, Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, 2018. a, b, c, d, e, f, g

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3