A spatial evaluation of high-resolution wind fields from empirical and dynamical modeling in hilly and mountainous terrain

Author:

Schlager Christoph,Kirchengast GottfriedORCID,Fuchsberger JuergenORCID,Kann Alexander,Truhetz HeimoORCID

Abstract

Abstract. Empirical high-resolution surface wind fields, automatically generated by a weather diagnostic application, the WegenerNet Wind Product Generator (WPG), were intercompared with wind field analysis data from the Integrated Nowcasting through Comprehensive Analysis (INCA) system and with regional climate model wind field data from the Consortium for Small Scale Modeling Model in Climate Mode (CCLM). The INCA analysis fields are available at a horizontal grid spacing of 1 km × 1 km, whereas the CCLM fields are from simulations at a 3 km × 3 km grid. The WPG, developed by Schlager et al. (2017, 2018), generates diagnostic fields on a high-resolution grid of 100 m × 100 m, using observations from two dense meteorological station networks: the WegenerNet Feldbach Region (FBR), located in a region predominated by a hilly terrain, and its Alpine sister network, the WegenerNet Johnsbachtal (JBT), located in a mountainous region. The wind fields of these different empirical–dynamical modeling approaches were intercompared for thermally induced and strong wind events, using hourly temporal resolutions as supplied by the WPG, with the focus on evaluating spatial differences and displacements between the different datasets. For this comparison, a novel neighborhood-based spatial wind verification methodology based on fractions skill scores (FSSs) is used to estimate the modeling performances. All comparisons show an increasing FSS with increasing neighborhood size. In general, the spatial verification indicates a better statistical agreement for the hilly WegenerNet FBR than for the mountainous WegenerNet JBT. The results for the WegenerNet FBR show a better agreement between INCA and WegenerNet than between CCLM and WegenerNet wind fields, especially for large scales (neighborhoods). In particular, CCLM clearly underperforms in the case of thermally induced wind events. For the JBT region, all spatial comparisons indicate little overlap at small neighborhood sizes, and in general large biases of wind vectors occur between the regional climate model (CCLM) and analysis (INCA) fields and the diagnostic (WegenerNet) reference dataset. Furthermore, grid-point-based error measures were calculated for the same evaluation cases. The statistical agreement, estimated for the vector-mean wind speed and wind directions again show better agreement for the WegenerNet FBR than for the WegenerNet JBT region. A combined examination of all spatial and grid-point-based error measures shows that CCLM with its limited horizontal resolution of 3 km × 3 km, and hence too smoothed an orography, is not able to represent small-scale wind patterns. The results for the JBT region indicate significant biases in the INCA analysis fields, especially for strong wind speed events. Regarding the WegenerNet diagnostic wind fields, the statistics show acceptable performance in the FBR and somewhat overestimated wind speeds for strong wind speed events in the Enns valley of the JBT region.

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3