Using an Artificial Neural Network to improve operational wind prediction in a small unresolved valley

Author:

CHINYOKA SINCLAIR1,STEENEVELD GERT-JAN1,HEDDE THIERRY2

Affiliation:

1. Meteorology and Air Quality Section, Wageningen University, Wageningen,The Netherlands

2. CEA, DES, IRESNE, DTN Laboratory for Environmental Transfer Modeling, Cadarache 13108, Saint-Paul-lès-Durance, France

Abstract

AbstractThis study improves surface wind predictions in an unresolved valley using an artificial neural network (ANN). Forecasting winds in complex terrain with a mesoscale model is challenging. This study assesses the quality of 3-km wind forecasts by the Weather Research and Forecasting (WRF) model and the potential of post-processing by an ANN within the 1-2 km wide Cadarache Valley in southeast France. Operational wind forecasts for 110m above ground level and the near-surface vertical potential temperature gradient with a lead time of 24-48h were used as ANN input. Observed horizontal wind components at 10m within the valley were used as targets during ANN training. We use the Directional ACCuracy (DACC45, wind direction error ≤ 45°) and mean absolute error to evaluate the WRF direct model output and the ANN results. By post-processing, the score for DACC45 improves from 56% in the WRF direct model output to 79% after applying the ANN. Furthermore, the ANN performed well during the day and night, but poorly during the morning and afternoon transitions. The ANN improves the DACC45 at 10m even for poor WRF forecasts (direction bias ≥ 45°) from 42% to 72%. A shorter lead time and finer grid spacing (1 km) showed negligible impact which suggests that a 3 km grid spacing and a 24-48h lead time is effective and relatively cheap to apply. We find that WRF performs well in near-neutral conditions and poorly in other atmospheric stability conditions. The ANN post-treatment consistently improves the wind forecast for all stability classes to a DACC45 of about 80%. The study demonstrates the ability to improve Cadarache valley wind forecasts using an ANN as post-processing for WRF daily forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3