Weather and climate forecasting with neural networks: using general circulation models (GCMs) with different complexity as a study ground
-
Published:2019-07-10
Issue:7
Volume:12
Page:2797-2809
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Scher SebastianORCID, Messori GabrieleORCID
Abstract
Abstract. Recently, there has been growing interest in the possibility of using neural networks for both weather forecasting
and the generation of climate datasets. We use a bottom–up approach
for assessing whether it should, in principle, be possible to do this. We use the relatively simple general circulation models (GCMs) PUMA and PLASIM as a simplified reality on which we train deep neural networks, which we then use for predicting the model weather at lead times of a few days. We specifically assess how the complexity of the climate model affects the neural network's forecast skill and how dependent the skill is on the length of the provided training period. Additionally, we show that using the neural networks to reproduce the climate of general circulation models including a seasonal cycle remains challenging – in contrast to earlier promising results on a model without seasonal cycle.
Publisher
Copernicus GmbH
Reference27 articles.
1. Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015. a 2. Buschow, S. and Friederichs, P.: Local dimension and recurrent circulation patterns in long-term climate simulations, arXiv preprint arXiv:1803.11255, 2018. a 3. C3S: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global
climate, Copernicus Climate Change Service Climate Data Store (CDS),
available at: https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 7 June 2019), 2017. a, b 4. Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff, S. D., and Worley, S. J.: The twentieth century reanalysis project, Q. J. Roy. Meteor. Soc., 137, 1–28, 2011. a 5. Coors, B., Paul Condurache, A., and Geiger, A.: Spherenet: Learning spherical representations for detection and classification in omnidirectional images, in: Proceedings of the European Conference on Computer Vision (ECCV), September 2018, Munich, Germany, 518–533, 2018. a
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|