Resilient Antarctic monsoonal climate prevented ice growth during the Eocene
-
Published:2024-01-10
Issue:1
Volume:20
Page:77-90
-
ISSN:1814-9332
-
Container-title:Climate of the Past
-
language:en
-
Short-container-title:Clim. Past
Author:
Baatsen MichielORCID, Bijl PeterORCID, von der Heydt AnnaORCID, Sluijs AppyORCID, Dijkstra Henk
Abstract
Abstract. Understanding the extreme greenhouse of the Eocene (56–34 Ma) is key to anticipating potential future conditions. While providing an end member towards a distant high-emission scenario, the Eocene climate also challenges the different tools at hand to reconstruct such conditions. Besides remaining uncertainty regarding the conditions under which the large-scale glaciation of Antarctica took place, there is poor understanding of how most of the continent remained ice free throughout the Eocene across a wide range of global temperatures. Seemingly contradictory indications of ice and thriving vegetation complicate efforts to explain the Antarctic Eocene climate. We use global climate model simulations to show that extreme seasonality mostly limited ice growth, mainly through high summer temperatures. Without ice sheets, much of the Antarctic continent had monsoonal conditions. Perennially mild and wet conditions along Antarctic coastlines are consistent with vegetation reconstructions, while extreme seasonality over the continental interior promoted intense weathering shown in proxy records. The results can thus explain the coexistence of warm and wet conditions in some regions, with small ice caps forming near the coast. The resilience of the climate regimes seen in these simulations agrees with the longevity of warm Antarctic conditions during the Eocene but also challenges our view of glacial inception.
Funder
Netherlands Earth System Science Centre Horizon 2020
Publisher
Copernicus GmbH
Reference48 articles.
1. Amoo, M., Salzmann, U., Pound, M. J., Thompson, N., and Bijl, P. K.: Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and pCO2, Clim. Past, 18, 525–546, https://doi.org/10.5194/cp-18-525-2022, 2022. a, b 2. Anagnostou, E., John, E. H., Edgar, K. M., Foster, G. L., Ridgwell, A., Inglis, G. N., Pancost, R. D., Lunt, D. J., and Pearson, P. N.: Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate, Nature, 533, 380–384, https://doi.org/10.1038/nature17423, 2016. a 3. Baatsen, M., van Hinsbergen, D. J. J., von der Heydt, A. S.,<span id="page89"/> Dijkstra, H. A., Sluijs, A., Abels, H. A., and Bijl, P. K.: Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic, Clim. Past, 12, 1635–1644, https://doi.org/10.5194/cp-12-1635-2016, 2016. a, b, c, d, e 4. Baatsen, M., von der Heydt, A. S., Huber, M., Kliphuis, M. A., Bijl, P. K., Sluijs, A., and Dijkstra, H. A.: The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5, Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, 2020. a, b, c, d, e, f, g 5. Baatsen, M., Kliphuis, M., von der Heydt, A., and Dijkstra, H.: CESM simulations Eocene monsoons, Utrecht University [data set], https://doi.org/10.24416/UU01-A0VMKZ, 2023. a
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|