Eocene to Oligocene vegetation and climate in the Tasmanian Gateway region were controlled by changes in ocean currents and <i>p</i>CO<sub>2</sub>

Author:

Amoo MichaelORCID,Salzmann UlrichORCID,Pound Matthew J.ORCID,Thompson NickORCID,Bijl Peter K.ORCID

Abstract

Abstract. Considered one of the most significant climate reorganizations of the Cenozoic period, the Eocene–Oligocene Transition (EOT; ca. 34.44–33.65) is characterized by global cooling and the first major glacial advance on Antarctica. In the southern high latitudes, the EOT cooling is primarily recorded in the marine realm, and its extent and effect on the terrestrial climate and vegetation are poorly documented. Here, we present new, well-dated, continuous, high-resolution palynological (sporomorph) data and quantitative sporomorph-based climate estimates recovered from the East Tasman Plateau (ODP Site 1172) to reconstruct climate and vegetation dynamics from the late Eocene (37.97 Ma) to the early Oligocene (33.06 Ma). Our results indicate three major climate transitions and four vegetation communities occupying Tasmania under different precipitation and temperature regimes: (i) a warm-temperate Nothofagus–Podocarpaceae-dominated rainforest with paratropical elements from 37.97 to 37.52 Ma; (ii) a cool-temperate Nothofagus-dominated rainforest with secondary Podocarpaceae rapidly expanding and taking over regions previously occupied by the warmer taxa between 37.306 and 35.60 Ma; (iii) fluctuation between warm-temperate–paratropical taxa and cool temperate forest from 35.50 to 34.49 Ma, followed by a cool phase across the EOT (34.30–33.82 Ma); and (iv) a post-EOT (earliest Oligocene) recovery characterized by a warm-temperate forest association from 33.55 to 33.06 Ma. Coincident with changes in the stratification of water masses and sequestration of carbon from surface water in the Southern Ocean, our sporomorph-based temperature estimates between 37.52 and 35.60 Ma (phase ii) showed 2–3 ∘C terrestrial cooling. The unusual fluctuation between warm and cold temperate forest between 35.50 to 34.59 Ma is suggested to be linked to the initial deepening of the Tasmanian Gateway, allowing eastern Tasmania to come under the influence of warm water associated with the proto-Leeuwin Current (PLC). Further to the above, our terrestrial data show the mean annual temperature declining by about 2 ∘C across the EOT before recovering in the earliest Oligocene. This phenomenon is synchronous with regional and global cooling during the EOT and linked to declining pCO2. However, the earliest Oligocene climate rebound along eastern Tasmania is linked to a transient recovery of atmospheric pCO2 and sustained deepening of the Tasmanian Gateway, promoting PLC throughflow. The three main climate transitional events across the studied interval (late Eocene–earliest Oligocene) in the Tasmanian Gateway region suggest that changes in ocean circulation due to accelerated deepening of the Tasmanian Gateway may not have been solely responsible for the changes in terrestrial climate and vegetation dynamics; a series of regional and global events, including a change in the stratification of water masses, sequestration of carbon from surface waters, and changes in pCO2, may have also played vital roles.

Funder

H2020 European Research Council

Natural Environment Research Council

Northumbria University

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3