Debris-flow surges of a very active alpine torrent: a field database
-
Published:2023-04-03
Issue:4
Volume:23
Page:1241-1256
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Lapillonne SuzanneORCID, Fontaine Firmin, Liebault FrédéricORCID, Richefeu Vincent, Piton GuillaumeORCID
Abstract
Abstract. This paper presents a methodology to analyse debris flows focusing at the surge scale rather than the full scale of the debris-flow event, as well as its application to a French site. Providing bulk surge features like volume, peak discharge, front height, front velocity and Froude numbers allows for numerical and experimental debris-flow investigations to be designed with narrower physical ranges and thus for deeper scientific questions to be explored. We suggest a method to access such features at the surge scale that can be applied to a wide variety of monitoring stations. Requirements for monitoring stations for the methodology to be applicable include (i) flow height measurements, (ii) a cross-section assumption and (iii) a velocity estimation. Raw data from three monitoring stations on the Réal torrent (drainage area: 2 km2, southeastern France) are used to illustrate an application to 34 surges measured from 2011 to 2020 at three monitoring stations. Volumes of debris-flow surges on the Réal torrent are typically sized at a few thousand cubic metres. The peak flow height of surges ranges from 1 to 2 m. The peak discharge range is around a few dozen cubic metres per second. Finally, we show that Froude numbers of such surges are near critical.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference45 articles.
1. Abancó, C., Hürlimann, M., Fritschi, B., Graf, C., and Moya, J.: Transformation of Ground Vibration Signal for Debris-Flow Monitoring and Detection in Alarm Systems, Sensors, 12, 4870–4891, https://doi.org/10.3390/s120404870, 2012. a 2. Albaba, A., Lambert, S., Nicot, F., and Chareyre, B.: Modeling the Impact of Granular Flow against an Obstacle, in: Recent Advances in Modeling Landslides and Debris Flows, edited by: Wu, W., Springer International Publishing, 95–105, https://doi.org/10.1007/978-3-319-11053-0_9, 2015. a 3. Arattano, M., Abancó, C., Coviello, V., and Hürlimann, M.: Processing the ground vibration signal produced by debris flows: the methods of amplitude and impulses compared, Comput. Geosci., 73, 17–27, https://doi.org/10.1016/j.cageo.2014.08.005, 2014. a 4. Bardou, E., Ancey, C., Bonnard, C., and Vulliet, L.: Classification of debris-flow deposits for hazard assessment in alpine areas, in: 3th International Conference on Debris-Flow hazards mitigation: mechanics, prediction, and assessment, Davos, Switzerland, Millpress, 799–808, 2003. a 5. Bel, C.: Analysis of debris-flow occurrence in active catchments of the French Alps using monitoring stations, PhD thesis, Université Grenoble Alpes, https://hal.science/tel-01643950/ (last access: 17 March 2023), 2017. a, b, c, d, e, f
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|