Real-scale measurements of debris-flow run-ups

Author:

Nagl GeorgORCID,Hübl JohannesORCID,Scheidl ChristianORCID

Abstract

AbstractRapid mass movements, such as debris flows, endanger alpine areas due to their destructive nature. In order to counteract these dangerous flows, it is necessary to design appropriate mitigation measures. A particular problem is the run-up of debris flows that impact on such structures. We provide in situ measurements of the run-up of three natural debrnis flows, each with multiple surges, in Gadria Creek, resulting from interaction with a mid-channel structure monitoring station. Four models were checked against data from other studies and the in situ measurements of the natural debris flows. The natural debris-flow measurements are all located in low Froude areas (Fr < 3) typical of Alpine granular debris flows. Sediment-laden pre-surges with Froude values greater than 2 produced the largest run-up factors in terms of run-up heights standardized to flow heights. Nevertheless, ensuing debris-flow surges exhibited a notable granular behavior and occurred at low Froude values. The findings indicate that the use of an energy conservation-based prediction model yields the most accurate estimates of the observed run-up factors. However, this smooth, gradual run-up can also be enhanced by preceding debris deposition and the formation of ramps. This can also prevent the formation of a reflection or shock wave, as assumed in models based on conservation of mass and momentum. These models have mainly overestimated the run-up factors of the observed debris flows.

Funder

University of Natural Resources and Life Sciences Vienna

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3