PIXEL-BASED CLASSIFICATION ANALYSIS OF LAND USE LAND COVER USING SENTINEL-2 AND LANDSAT-8 DATA

Author:

Sekertekin A.,Marangoz A. M.,Akcin H.

Abstract

Abstract. The aim of this study is to conduct accuracy analyses of Land Use Land Cover (LULC) classifications derived from Sentinel-2 and Landsat-8 data, and to reveal which dataset present better accuracy results. Zonguldak city and its near surrounding was selected as study area for this case study. Sentinel-2 Multispectral Instrument (MSI) and Landsat-8 the Operational Land Imager (OLI) data, acquired on 6 April 2016 and 3 April 2016 respectively, were utilized as satellite imagery in the study. The RGB and NIR bands of Sentinel-2 and Landsat-8 were used for classification and comparison. Pan-sharpening process was carried out for Landsat-8 data before classification because the spatial resolution of Landsat-8 (30m) is far from Sentinel-2 RGB and NIR bands (10m). LULC images were generated using pixel-based Maximum Likelihood (MLC) supervised classification method. As a result of the accuracy assessment, kappa statistics for Sentinel-2 and Landsat-8 data were 0.78 and 0.85 respectively. The obtained results showed that Sentinel-2 MSI presents more satisfying LULC images than Landsat-8 OLI data. However, in some areas of Sea class Landsat-8 presented better results than Sentinel-2.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3