Characterizing land use/land cover change dynamics by an enhanced random forest machine learning model: a Google Earth Engine implementation

Author:

Pande Chaitanya Baliram,Srivastava Aman,Moharir Kanak N.,Radwan Neyara,Mohd Sidek Lariyah,Alshehri Fahad,Pal Subodh Chandra,Tolche Abebe Debele,Zhran Mohamed

Abstract

AbstractLand use and land cover (LULC) analysis is crucial for understanding societal development and assessing changes during the Anthropocene era. Conventional LULC mapping faces challenges in capturing changes under cloud cover and limited ground truth data. To enhance the accuracy and comprehensiveness of the descriptions of LULC changes, this investigation employed a combination of advanced techniques. Specifically, multitemporal 30 m resolution Landsat-8 satellite imagery was utilized, in addition to the cloud computing capabilities of the Google Earth Engine (GEE) platform. Additionally, the study incorporated the random forest (RF) algorithm. This study aimed to generate continuous LULC maps for 2014 and 2020 for the Shrirampur area of Maharashtra,  India. A novel multiple composite RF approach based on LULC classification was utilized to generate the final LULC classification maps utilizing the RF-50 and RF-100 tree models. Both RF models utilized seven input bands (B1 to B7) as the dataset for LULC classification. By incorporating these bands, the models were able to influence the spectral information captured by each band to classify the LULC categories accurately. The inclusion of multiple bands enhanced the discrimination capabilities of the classifiers, increasing the comprehensiveness of the assessment of the LULC classes. The analysis indicated that RF-100 exhibited higher training and validation/testing accuracy for 2014 and 2020 (0.99 and 0.79/0.80, respectively). The study further revealed that agricultural land, built-up land, and water bodies have changed adequately and have undergone substantial variation among the LULC classes in the study area. Overall, this research provides novel insights into the application of machine learning (ML) models for LULC mapping and emphasizes the importance of selecting the optimal tree combination for enhancing the accuracy and reliability of LULC maps based on the GEE and different RF tree models. The present investigation further enabled the interpretation of pixel-level LULC interactions while improving image classification accuracy and suggested the best models for the classification of LULC maps through the identification of changes in LULC classes.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3