Accuracy Assessment of land use maps classification based on remote sensing and GIS techniques

Author:

Abdullah Abbas Hamid,Sabah Jaber Hussein

Abstract

The need to classify sentinel-2 satellite images to create land use /land cover (LULC) are essential to analysis the processes of environment problems and to improve living conditions. Hence, this research aims to assess of accuracy classification by Support Vector Machine (SVM) approach to create LULC maps from sentinel-2 satellite images using remote sensing and GIS. The selected study area for this research is Baghdad city because of it has a unique political stability and due to rapid urbanization that lead to rise additional request for natural resources and affected on LULC in Baghdad city. After preprocessing and processing of satellite images, thematic maps were created and classified into five main classes based on visual interpretation and visit the field of the study area containing: urban, vegetation, soil, asphalt roads, and water bodies. The results showed that classification accuracy assessment of SVM algorithm are acceptable because of overall accuracy and Kappa index equal (88%, 0.84) respectively.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3