First year of practical experiences of the new Arctic AWIPEV-COSYNA cabled Underwater Observatory in Kongsfjorden, Spitsbergen

Author:

Fischer PhilippORCID,Schwanitz Max,Loth Reiner,Posner Uwe,Brand MarkusORCID,Schröder Friedhelm

Abstract

Abstract. A combined year-round assessment of selected oceanographic data and a macrobiotic community assessment was performed from October 2013 to November 2014 in the littoral zone of the Kongsfjorden polar fjord system on the western coast of Svalbard (Norway). State of the art remote controlled cabled underwater observatory technology was used for daily vertical profiles of temperature, salinity, and turbidity together with a stereo-optical assessment of the macrobiotic community, including fish. The results reveal a distinct seasonal cycle in total species abundances, with a significantly higher total abundance and species richness during the polar winter when no light is available underwater compared to the summer months when 24 h light is available. During the winter months, a temporally highly segmented community was observed with respect to species occurrence, with single species dominating the winter community for restricted times. In contrast, the summer community showed an overall lower total abundance as well as a significantly lower number of species. The study clearly demonstrates the high potential of cable connected remote controlled digital sampling devices, especially in remote areas, such as polar fjord systems, with harsh environmental conditions and limited accessibility. A smart combination of such new digital sampling methods with classic sampling procedures can provide a possibility to significantly extend the sampling time and frequency, especially in remote and difficult to access areas. This can help to provide a sufficient data density and therefore statistical power for a sound scientific analysis without increasing the invasive sampling pressure in ecologically sensitive environments.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3