Kelp forest community structure and demography in Kongsfjorden (Svalbard) across 25 years of Arctic warming

Author:

Düsedau Luisa12ORCID,Fredriksen Stein3,Brand Markus1ORCID,Fischer Philipp1ORCID,Karsten Ulf4ORCID,Bischof Kai2ORCID,Savoie Amanda5ORCID,Bartsch Inka1ORCID

Affiliation:

1. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany

2. Department of Marine Botany University of Bremen & MARUM Bremen Germany

3. Department of Biosciences University of Oslo Oslo Norway

4. Department of Applied Ecology and Phycology Institute of Biological Sciences, University of Rostock Rostock Germany

5. Centre for Arctic Knowledge and Exploration, Canadian Museum of Nature Ottawa Ontario Canada

Abstract

AbstractThe Arctic archipelago of Svalbard is a hotspot of global warming and many fjords experience a continuous increase in seawater temperature and glacial melt while sea‐ice cover declines. In 1996/1998, 2012–2014, and 2021 macroalgal biomass and species diversity were quantified at the study site Hansneset, Kongsfjorden (W‐Spitsbergen) in order to identify potential changes over time. In 2021, we repeated the earlier studies by stratified random sampling (1 × 1 m2, n = 3) along a sublittoral depth transect (0, 2.5, 5, 10, and 15 m) and investigated the lower depth limits of dominant brown algae between 3 and 19 m. The maximum fresh weight (FW) of all seaweeds was 11.5 kg m−2 at 2.5 m and to 99.9% constituted of kelp. Although biomass distribution along the depth transect in 2021 was not significantly different compared to 2012/2013, the digitate kelp community (Laminaria digitata/Hedophyllum nigripes) had transformed into an Alaria esculenta‐dominated kelp forest. Consequently, a pronounced shift in kelp forest structure occurred over time as we demonstrate that biomass allocation to thallus parts is kelp species‐specific. Over the past decade, kelp demography changed and in 2021 a balanced age structure of kelps (juveniles plus many older kelp individuals) was only apparent at 2.5 m. In addition, the abundances and lower depth limits of all dominant brown algae declined noticeably over the last 25 years while the red algal flora abundance remained unchanged at depth. We propose that the major factor driving the observed changes in the macroalgal community are alterations in underwater light climate, as in situ data showed increasing turbidity and decreasing irradiance since 2012 and 2017, respectively. As a consequence, the interplay between kelp forest retreat to lower depth levels caused by coastal darkening and potential macroalgal biomass gain with increasing temperatures will possibly intensify in the future with unforeseen consequences for melting Arctic coasts and fjord ecosystem services.

Funder

Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

H2020 Societal Challenges

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3