Development and operation of a novel non-invasive opto-acoustic underwater fish observatory in Kiel Bight, Southwestern Baltic Sea

Author:

Gröger Joachim P.,Cisewski Boris,Badri-Hoeher Sabah,Böer Gordon,Boos Karin,Clemmesen Catriona,Cojocaru Ala,Dauben Verena,Hoeher Peter A.,Lehmann Andreas,Matz Sebastian,Mehrtens Hela,Mittermayer Felix,Renkewitz Helge,Schramm Hauke,Strickmann Tobias,Westphalen Jonni,Wilts Thomas,Winkler Julian,Wolf Dennis,Zenk Oliver

Abstract

This study presents a trilateral test array of new opto-acoustic Underwater Fish Observatories (UFOs) that were operated and tested in Kiel Bight as part of the “UFOTriNet” project. While hydroacoustic and optical techniques have so far been used individually to observe and monitor fish stocks, we present a coupled hybrid system consisting of an optical device intended to scan the near-field as a subsample of a spatially larger medium-to-far-field, scanned by an acoustical device. The optical device consists of two residual light amplifying camera modules able to detect and classify various marine species at a high resolution in the range of at max 4 meters in the study area. To compensate for this spatial limitation, the acoustical component consists of a 2D imaging sonar with a maximum range of 50 m, albeit with a lower resolution. Species affiliation, morphometric characteristics of fish and other marine organisms were stereo-optically detected and classified in the nearfield, blended with acoustical activity in medium to far range, and projected onto the entire insonified area using a hybrid algorithm. Through the synchronous acquisition of multiparametric abiotic and biotic data, UFO allows an automatic, continuous, and non-invasive long-term monitoring of various fish and other marine species and their habitats at regional hotspots. An 86-day multiparametric sample revealing an abrupt shift from a clupeid fish to a gelatinous plankton dominated regime in summer/autumn 2021 in Kiel Fjord is used to demonstrate the potential of UFO for various applications.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3