CLUSTER observations of electron outflowing beams carrying downward currents above the polar cap by northward IMF

Author:

Teste A.,Fontaine D.,Sauvaud J.-A.,Maggiolo R.,Canu P.,Fazakerley A.

Abstract

Abstract. Above the polar cap, at about 5–9 Earth radii (RE) altitude, the PEACE experiment onboard CLUSTER detected, for the first time, electron beams outflowing from the ionosphere with large and variable energy fluxes, well collimated along the magnetic field lines. All these events occurred during periods of northward or weak interplanetary magnetic field (IMF). These outflowing beams were generally detected below 100 eV and typically between 40 and 70 eV, just above the photoelectron level. Their energy gain can be explained by the presence of a field-aligned potential drop below the spacecraft, as in the auroral zone. The careful analysis of the beams distribution function indicates that they were not only accelerated but also heated. The parallel heating is estimated to about 2 to 20 eV and it globally tends to increase with the acceleration energy. Moreover, WHISPER observed broadband electrostatic emissions around a few kHz correlated with the outflowing electron beams, which suggests beam-plasma interactions capable of triggering plasma instabilities. In presence of simultaneous very weak ion fluxes, the outflowing electron beams are the main carriers of downward field-aligned currents estimated to about 10 nA/m2. These electron beams are actually not isolated but surrounded by wider structures of ion outflows. All along its polar cap crossings, Cluster observed successive electron and ion outflows. This implies that the polar ionosphere represents a significant source of cold plasma for the magnetosphere during northward or weak IMF conditions. The successive ion and electron outflows finally result in a filamented current system of opposite polarities which connects the polar ionosphere to distant regions of the magnetosphere.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference38 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mesoscale Structure and Properties of the Terrestrial Magnetotail Plasma Sheet From the Magnetospheric Multiscale Mission;Journal of Geophysical Research: Space Physics;2023-09

2. The Northward IMF Magnetosphere;Magnetospheres in the Solar System;2021-04-23

3. DMSP Observations of High‐Latitude Dayside Aurora (HiLDA);Journal of Geophysical Research: Space Physics;2021-04

4. Extremely Collimated Electron Beams in the High Latitude Magnetosphere Observed by Arase;Geophysical Research Letters;2021-03-08

5. Aurora in the Polar Cap: A Review;Space Science Reviews;2020-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3