Mesoscale Structure and Properties of the Terrestrial Magnetotail Plasma Sheet From the Magnetospheric Multiscale Mission

Author:

Vo T.12ORCID,Ergun R. E.13ORCID,Usanova M. E.1ORCID,Chasapis A.1

Affiliation:

1. Laboratory for Atmospheric and Space Physics University of Colorado Boulder CO USA

2. Department of Physics University of Colorado Boulder CO USA

3. Department of Astrophysical and Planetary Sciences University of Colorado Boulder CO USA

Abstract

AbstractUsing Magnetospheric Multiscale mission (MMS) orbits in the Earth's magnetotail from 2017 to 2020, plasma conditions and the 3D spatial structure of inner‐magnetotail plasma environments (with a focus on the plasma sheet (PS)) are studied with different approaches. Threshold conditions for distinguishing the PS, PS boundary layers, and lobes are derived from the statistical properties of background plasma parameters. Our results support previous studies that employed similar methods using Cluster data. However, stronger currents are observed in both the lobes and PS, likely due to the smaller spacecraft separation (≲70 km) that can resolve thin electron‐scale currents. Threshold conditions are used together with magnetic field and electric field measurements to image the spatial structure of the PS. Results are in good agreement with a global neutral sheet model based on solar wind conditions and magnetospheric configurations. Furthermore, the Earth's dipole tilts toward the Sun around June solstice, which warps the magnetotail as much as ∼2–4 RE in Z geocentric solar magnetospheric. This warping effect is relaxed toward September equinox. Consequently, as MMS travels through the magnetotail from dawn to dusk during this period, there is an apparent dawn‐dusk asymmetry in plasma conditions between June and September. Kink‐like flapping waves and interplanetary magnetic field twisting are other mesoscale processes attributed with a few RE of flaring near the flanks. These findings reveal important insights into the mesoscale structure and dynamics of the magnetotail.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3