Long-term regional trends of nitrogen and sulfur deposition in the United States from 2002 to 2017

Author:

Benish Sarah E.ORCID,Bash Jesse O.ORCID,Foley Kristen M.ORCID,Appel K. Wyat,Hogrefe ChristianORCID,Gilliam Robert,Pouliot GeorgeORCID

Abstract

Abstract. Atmospheric deposition of nitrogen (N) and sulfur (S) compounds from human activity has greatly declined in the United States (US) over the past several decades in response to emission controls set by the Clean Air Act. While many observational studies have investigated spatial and temporal trends of atmospheric deposition, modeling assessments can provide useful information over areas with sparse measurements, although they usually have larger horizontal resolutions and are limited by input data availability. In this analysis, we evaluate wet, dry, and total N and S deposition from multiyear simulations within the contiguous US (CONUS). Community Multiscale Air Quality (CMAQ) model estimates from the EPA's (Environmental Protection Agency) Air QUAlity TimE Series (EQUATES) project contain important model updates to atmospheric deposition algorithms compared to previous model data, including the new Surface Tiled Aerosol and Gaseous Exchange (STAGE) bidirectional deposition model which contains land-use-specific resistance parameterization and land-use-specific deposition estimates needed to estimate the differential impacts of N deposition to different land use types. First, we evaluate model estimates of wet deposition and ambient concentrations, finding underestimates of SO4, NO3, and NH4 wet deposition compared to National Atmospheric Deposition Program observations and underestimates of NH4 and SO4 and overestimates of SO2 and TNO3 (HNO3+NO3) compared to the Clean Air Status and Trends Network (CASTNET) ambient concentrations. Second, a measurement–model fusion approach employing a precipitation and bias correction to wet-deposition estimates is found to reduce model bias and improve correlations compared to the unadjusted model values. Model agreement of wet deposition is poor over parts of the West and Northern Rockies, due to errors in precipitation estimates caused by complex terrain and uncertainty in emissions at the relatively coarse 12 km grid resolution used in this study. Next, we assess modeled N and S deposition trends across climatologically consistent regions in the CONUS. Total deposition of N and S in the eastern US is larger than the western US with a steeper decreasing trend from 2002–2017; i.e., total N declined at a rate of approximately −0.30 kg N ha−1 yr−1 in the Northeast and Southeast and by −0.02 kg N ha−1 yr−1 in the Northwest and Southwest. Widespread increases in reduced N deposition across the Upper Midwest, Northern Rockies, and West indicate evolving atmospheric composition due to increased precipitation amounts over some areas, growing agricultural emissions, and regional NOx/SOx emission reductions shifting gas–aerosol partitioning; these increases in reduced N deposition are generally masked by the larger decreasing oxidized N trend. We find larger average declining trends of total N and S deposition between 2002–2009 than 2010–2017, suggesting a slowdown of the rate of decline likely in response to smaller emission reductions. Finally, we document changes in the modeled total N and S deposition budgets. The average annual total N deposition budget over the CONUS decreases from 7.8 in 2002 to 6.3 kg N ha−1 yr−1 in 2017 due to declines in oxidized N deposition from NOx emission controls. Across the CONUS during the 2002–2017 time period, the average contribution of dry deposition to the total N deposition budget drops from 60 % to 52 %, whereas wet deposition dominates the S budget rising from 45 % to 68 %. Our analysis extends upon the literature documenting the growing contribution of reduced N to the total deposition budget, particularly in the Upper Midwest and Northern Rockies, and documents a slowdown of the declining oxidized N deposition trend, which may have consequences on vegetation diversity and productivity.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference73 articles.

1. Aas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J. L., Klimont, Z., Galy-Lacaux, C., Lehmann, C. M. B., Myhre, C. L., Myhre, G., Olivie, D., Sato, K., Quaas, J., Rao, P. S. P., Schulz, M., Shindell, D. T., Skeie, R. B., Stein, A., Takemura, T., Tsyro, S., Vet, R., and Xu, X.: Global and regional trends of atmospheric sulfur, Sci. Rep.-UK, 9, 953, https://doi.org/10.1038/s41598-018-37304-0, 2019.

2. Ackerman, D., Millet, D. B., and Chen, X.: Global Estimates of Inorganic Nitrogen Deposition Across Four Decades, Global Biogeochem. Cy., 33, 100–107, https://doi.org/10.1029/2018gb005990, 2019.

3. Appel, K. W., Foley, K. M., Bash, J. O., Pinder, R. W., Dennis, R. L., Allen, D. J., and Pickering, K.: A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002–2006, Geosci. Model Dev., 4, 357–371, https://doi.org/10.5194/gmd-4-357-2011, 2011.

4. Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G. A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G., Schwede, D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation, Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021.

5. Beck, J., Brown, J., Dudhia, J., Gill, D., Hertneky, T., Klemp, J., Wang, W., Williams, C., Hu, M., James, E., Kenyon, J., Smirnova, T., and Kim, J.-H.: An Evaluation of a Hybrid, Terrain-Following Vertical Coordinate in the WRF-Based RAP and HRRR Models, Weather Forecast., 35, 1081–1096, https://doi.org/10.1175/waf-d-19-0146.1, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3