Exploring Deposition Observations of Oxidized Sulfur and Nitrogen as a Constraint on Emissions in the United States

Author:

Dutta Ishir1ORCID,Heald Colette L.12ORCID

Affiliation:

1. Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA

2. Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA USA

Abstract

AbstractEmissions of anthropogenic sulfur and nitrogen oxides form secondary pollutants that impact human health, ecosystems, and climate. Accurate estimates of emissions trends are needed to verify the effectiveness of the regulation of these species. We explore the utility of deposition measurements of SOx (=SO2 + SO42−) and TNO3 (=HNO3 + NO3) as constraints on emissions trends of SOx and NOx in the conterminous United States (CONUS) from 1990 to 2021. The GEOS‐Chem model captures observed annual SOx and TNO3 wet deposition at NADP‐NTN sites in 2011 with a −15% and +15% normalized mean bias (NMB), respectively. The model overestimates the dry deposition of SOx and TNO3 estimated at CASTNET sites in 2011 (NMB >100%), however, this bias is substantially reduced when using an alternate derived dry deposition data set at the same sites, highlighting the uncertainty in dry deposition velocities. Despite this, we find that the model (driven by scaled NEI emissions) captures the relative trend in dry deposition of SOx (−93% observed and −94% simulated) and TNO3 (−66% observed and −68% simulated) from 1990 to 2021 and that these decreases closely reflect the trends in anthropogenic SO2 emissions (−93%) and anthropogenic NOx emissions (−71%), respectively. SOx and TNO3 wet deposition observations are dominated by soluble secondary products and are more influenced by natural and transboundary sources, and therefore have decreased more modestly over the same period (−78% and −52%). Natural sources of NOx are relatively constant during this time and therefore moderate the reduction in total NOx emissions (−55%).

Funder

Climate Program Office

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3