Spatial Distribution of Ammonia Concentrations and Modeled Dry Deposition in an Intensive Dairy Production Region

Author:

Leytem April B.1,Walker John T.2,Wu Zhiyong3ORCID,Nouwakpo Kossi1ORCID,Baublitz Colleen2ORCID,Bash Jesse2,Beachley Gregory4ORCID

Affiliation:

1. Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA

2. Office of Research and Development, United States Environmental Protection Agency, Durham, NC 27711, USA

3. RTI International, Durham, NC 27711, USA

4. Office of Atmospheric Protection, United States Environmental Protection Agency, Washington, DC 20004, USA

Abstract

Agriculture generates ~83% of total US ammonia (NH3) emissions, potentially adversely impacting sensitive ecosystems through wet and dry deposition. Regions with intense livestock production, such as the dairy region of south-central Idaho, generate hotspots of NH3 emissions. Our objective was to measure the spatial and temporal variability of NH3 across this region and estimate its dry deposition. Ambient NH3 was measured using diffusive passive samplers at 8 sites in two transects across the region from 2018–2020. NH3 fluxes were estimated using the Surface Tiled Aerosol and Gaseous Exchange (STAGE) model. Peak NH3 concentrations were 4–5 times greater at a high-density dairy site compared to mixed agriculture/dairy or agricultural sites, and 26 times greater than non-agricultural sites with prominent seasonal trends driven by temperature. Annual estimated dry deposition rates in areas of intensive dairy production can approach 45 kg N ha−1 y−1, compared to <1 kg N ha−1 y−1 in natural landscapes. Our results suggest that the natural sagebrush steppe landscapes interspersed within and surrounding agricultural areas in southern Idaho receive NH3 dry deposition rates within and above the range of nitrogen critical loads for North American deserts. Finally, our results highlight a need for improved understanding of the role of soil processes in NH3 dry deposition to arid and sparsely vegetated natural ecosystems across the western US.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3