Characterisation of gaseous iodine species detection using the multi-scheme chemical ionisation inlet 2 with bromide and nitrate chemical ionisation methods

Author:

He Xu-ChengORCID,Shen Jiali,Iyer SiddharthORCID,Juuti Paxton,Zhang JiangyiORCID,Koirala Mrisha,Kytökari Mikko M.,Worsnop Douglas R.,Rissanen MattiORCID,Kulmala MarkkuORCID,Maier Norbert M.,Mikkilä Jyri,Sipilä Mikko,Kangasluoma JuhaORCID

Abstract

Abstract. The multi-scheme chemical ionisation inlet 1 (MION1) enables rapid switching between the measurement of atmospheric ions without chemical ionisation and neutral molecules using various atmospheric pressure chemical ionisation methods. In this study, we introduce the upgraded version, the multi-scheme chemical ionisation inlet 2 (MION2). The new design incorporates enhanced ion optics, resulting in increased reagent ion concentration, ensuring a robust operation, and enabling the use of multiple chemical ionisation methods with the same ionisation time. In order to simplify the regular calibration of MION2, we developed an open-source flow reactor chemistry model called MARFORCE. This model enables quantification of the chemical production of sulfuric acid (H2SO4), hypoiodous acid (HOI), and hydroperoxyl radical (HO2). MARFORCE simulates the convection–diffusion–reaction processes occurring within typical cylindrical flow reactors with uniform inner diameters. The model also includes options to simulate chemical processes in the following two scenarios: (1) when two flow reactors with different inner diameters are connected and (2) when two flows are merged into one using a Y-shaped tee, although with reduced accuracy. Furthermore, the chemical mechanism files in the model are compatible with the widely used Master Chemical Mechanism (MCM), allowing for future adaptation to simulate other chemical processes in flow reactors. Furthermore, we conducted a comprehensive characterisation of the bromide (Br−) and nitrate (NO3-) chemical ionisation methods with different ionisation times. We performed calibration experiments for H2SO4, HOI, and HO2 by combining gas kinetic experiments with the MARFORCE model. The evaluation of sulfur dioxide (SO2), water (H2O), and molecular iodine (I2) involved dilution experiments from a gas cylinder (SO2), dew point mirror measurements (H2O), and a derivatisation approach combined with a high-performance liquid chromatography quantification (I2), respectively. Our findings indicate that the detection limit is inversely correlated with the fragmentation enthalpy of the analyte–reagent ion (Br−) cluster. In other words, stronger binding (resulting in a larger fragmentation enthalpy) leads to a lower detection limit. Additionally, a moderately longer ionisation time enhances the detection sensitivity, thereby reducing the detection limit. For instance, when using the Br− chemical ionisation method with a 300 ms ionisation time, the estimated detection limit for H2SO4 is 2.9×104 molec. cm−3. Notably, this detection limit is even superior to that achieved by the widely used Eisele-type chemical ionisation inlet (7.6×104 molec. cm−3), as revealed by direct comparisons. While the NO3- chemical ionisation method remains stable in the presence of high humidity, we have observed that the Br− chemical ionisation method (Br−–MION2) is significantly affected by the air water content. Higher levels of air water lead to reduced sensitivity for HO2 and SO2 under the examined conditions. However, we have found that a sharp decline in sensitivity for H2SO4, HOI, and I2 occurs only when the dew point exceeds 0.5–10.5 ∘C (equivalent to 20 %–40 % RH; calculated at 25 ∘C throughout this paper). For future studies utilising the atmospheric pressure Br− chemical ionisation method, including Br−–MION2, it is crucial to carefully consider the molecular-level effects of humidity. By combining approaches such as the water-insensitive NO3-–MION2 with Br−–MION2, MION2 can offer more comprehensive insights into atmospheric composition than what can be achieved by either method alone. By employing instrument voltage scanning, chemical kinetic experiments, and quantum chemical calculations, we have conclusively established that the presence of iodine oxides does not interfere with the detection of HIO3. Our comprehensive analysis reveals that the ions IO3-, HIO3⚫NO3-, and HIO3⚫Br−, which are detected using the Br− and NO3- chemical ionisation methods, are primarily, if not exclusively, generated from gaseous HIO3 molecules within atmospherically relevant conditions.

Funder

Academy of Finland

Horizon 2020

Jane ja Aatos Erkon Säätiö

Jenny ja Antti Wihurin Rahasto

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference81 articles.

1. Agarwal, B., González-Méndez, R., Lanza, M., Sulzer, P., Märk, T. D., Thomas, N., and Mayhew, C. A.: Sensitivity and Selectivity of Switchable Reagent Ion Soft Chemical Ionization Mass Spectrometry for the Detection of Picric Acid, J. Phys. Chem. A, 118, 8229–8236, https://doi.org/10.1021/jp5010192, 2014. a

2. Alonso, M., Carsí, M., and Huang, C.-H.: Using the fully developed concentration profile to determine particle penetration in a laminar flow tube, J. Aerosol Sci., 97, 34–37, https://doi.org/10.1016/j.jaerosci.2016.04.002, 2016. a, b, c

3. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. a

4. Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers, J., Brooks, I. M., Saiz-Lopez, A., Salter, M., Tjernström, M., Baltensperger, U., Zieger, P., and Schmale, J.: Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions, Nat. Commun., 11, 4924, https://doi.org/10.1038/s41467-020-18551-0, 2020. a

5. Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurtén, T., Otkjær, R. V., Kjaergaard, H. G., Stratmann, F., Herrmann, H., Sipilä, M., Kulmala, M., and Ehn, M.: Hydroxyl radical-induced formation of highly oxidized organic compounds, Nat. Commun., 7, 13677, https://doi.org/10.1038/ncomms13677, 2016. a, b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3