On the ocean's response to enhanced Greenland runoff in model experiments: relevance of mesoscale dynamics and atmospheric coupling

Author:

Martin TorgeORCID,Biastoch ArneORCID

Abstract

Abstract. Increasing Greenland Ice Sheet melting is anticipated to impact water mass transformation in the subpolar North Atlantic and ultimately the meridional overturning circulation. Complex ocean and climate models are widely applied to estimate magnitude and timing of related impacts under global warming. We discuss the role of the ocean mean state, subpolar water mass transformation, mesoscale eddies, and atmospheric coupling in shaping the response of the subpolar North Atlantic Ocean to enhanced Greenland runoff. In a suite of eight dedicated 60- to 100-year-long model experiments with and without atmospheric coupling, with eddy processes parameterized and explicitly simulated and with regular and significantly enlarged Greenland runoff, we find (1) a major impact by the interactive atmosphere in enabling a compensating temperature feedback, (2) a non-negligible influence by the ocean mean state biased towards greater stability in the coupled simulations, both of which make the Atlantic meridional overturning circulation less susceptible to the freshwater perturbation applied, and (3) a more even spreading and deeper mixing of the runoff tracer in the subpolar North Atlantic and enhanced inter-gyre exchange with the subtropics in the strongly eddying simulations. Overall, our experiments demonstrate the important role of mesoscale ocean dynamics and atmosphere feedback in projections of the climate system response to enhanced Greenland Ice Sheet melting and hence underline the necessity to advance scale-aware eddy parameterizations for next-generation climate models.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference101 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Climate tipping point interactions and cascades: a review;Earth System Dynamics;2024-01-26

2. Challenges simulating the AMOC in climate models;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-10-23

3. Do Salinity Variations Along the East Greenland Shelf Show Imprints of Increasing Meltwater Runoff?;Journal of Geophysical Research: Oceans;2023-10

4. Decadal changes in Atlantic overturning due to the excessive 1990s Labrador Sea convection;Nature Communications;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3