Abstract
AbstractChanges in the Atlantic Meridional Overturning Circulation (AMOC) represent a crucial component of Northern Hemisphere climate variability. In modelling studies decadal overturning variability has been attributed to the intensity of deep winter convection in the Labrador Sea. This linkage is challenged by transport observations at sections across the subpolar gyre. Here we report simulations with an eddy-rich ocean model which captures the observed concentration of downwelling in the northeastern Atlantic and the negligible impact of interannual variations in Labrador Sea convection during the last decade. However, the exceptionally cold winters in the Labrador Sea during the first half of the 1990s induced a positive AMOC anomaly of more than 20%, mainly by augmenting the downwelling in the northeastern North Atlantic. The remote effect of excessive Labrador Sea buoyancy forcing is related to rapid spreading of mid-depth density anomalies into the Irminger Sea and their entrainment into the deep boundary current off Greenland.
Funder
Bundesministerium für Bildung und Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献