Long-term variability of aerosol optical thickness in Eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO<sub>2</sub> correction

Author:

Chubarova N. Y.ORCID,Poliukhov A. A.ORCID,Gorlova I. D.

Abstract

Abstract. The atmospheric aerosol properties were obtained within the framework of the AERONET program at the Moscow State University Meteorological Observatory (Moscow MSU MO) over the 2001–2014 period. The quality data control has revealed the necessity of additional cloud screening and NO2 correction. The application of additional cloud screening according to hourly visual cloud observations provides a decrease in monthly average aerosol optical thickness (AOT) at 500 nm of up to 0.03 compared with the standard data set. We also show that the additional NO2 correction of the AERONET version 2 data is needed in large megalopolis, like Moscow, with 12 million residents and NOx emission rates of about 100 kt yr−1. According to the developed method, we estimated monthly mean NO2 content, which provides an additional decrease of 0.01 for AOT at 340 nm, and of about 0.015 – for AOT at 380 and 440 nm. The ratios of NO2 optical thickness to AOT at 380 and 440 nm are about 5–6 % in summer and reach 15–20 % in winter when both factors have similar effects on UV irradiance. Seasonal cycle of AOT at 500 nm is characterized by a noticeable summer and spring maxima, and a minimum in winter conditions, changing from 0.08 in December and January up to 0.3 in August. The application of the additional cloud screening removes a local AOT maximum in February. Statistically significant negative trends in annual AOT for UV and mid-visible spectral range have been obtained both for average and 50 % quantile values. The pronounced negative changes were observed in most months with the rate of about −1–5 % yr−1 and could be attributed to the negative trends in emissions (E) of different aerosol precursors of about 135 Gg yr−2 in ESOx, 54 Gg yr−2 in ENMVOC, and slight negative changes in NOx over the European part of Russia. No significant influence of natural factors on temporal AOT variations has been revealed.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference51 articles.

1. Barry, R. G. and Chorley, R. J.: Atmosphere, weather and climate (7th ed.), Routledge, London, UK, 80–81, 1998.

2. Brasseur, G. and Solomon S.: Aeronomy of the Middle Atmosphere, D. Reidel Publishing company, Dordrecht, the Netherlands, 452 pp., 1986.

3. Bruns, M.: NO2 retrieval using Airborne Multi Axis Differential Optical Absorption Spectrometer (AMAXDOAS) data, Dissertation, Universität Bremen, Germany, 174 pp., 2004.

4. Bruns, M., Buehler, S. A., Burrows, J. P., Richter, A., Rozanov, A., Wang, P., Heue, K. P., Platt, U., Pundt, I., and Wagner, T.: NO2 Profile retrieval using airborne multi axis UV-visible skylight absorption measurements over central Europe, Atmos. Chem. Phys., 6, 3049–3058, https://doi.org/10.5194/acp-6-3049-2006, 2006.

5. Chew, B. N., Campbell J. R., Reid J. S., Giles D. M., and Welton E. J.: Salinas S.V., and Liew S.C.: Tropical cirrus cloud contamination in sun photometer data, Atmos. Environ., 45, 6724–6731, 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3