Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments

Author:

Di Antonio LudovicoORCID,Di Biagio ClaudiaORCID,Foret Gilles,Formenti PaolaORCID,Siour Guillaume,Doussin Jean-François,Beekmann Matthias

Abstract

Abstract. The aerosol optical depth (AOD) is a derived measurement useful to investigate the aerosol load and its distribution at different spatio-temporal scales. In this work we use long-term (2000–2021) MAIAC (Multi-Angle Implementation of Atmospheric Correction) retrievals with 1 km resolution to investigate the climatological AOD variability and trends at different scales in Europe: a continental (30–60∘ N, 20∘ W–40∘ E), a regional (100 × 100 km2) and an urban–local scale (3 × 3 km2). The AOD climatology at the continental scale shows the highest values during summer (JJA) and the lowest during winter (DJF) seasons. Regional and urban–local scales are investigated for 21 cities in Europe, including capitals and large urban agglomerations. Analyses show AOD average (550 nm) values between 0.06 and 0.16 at the urban–local scale while also displaying a strong north–south gradient. This gradient corresponds to a similar one in the European background, with higher AOD being located over the Po Valley, the Mediterranean Basin and eastern Europe. Average enhancements of the local with respect to regional AOD of 57 %, 55 %, 39 % and 32 % are found for large metropolitan centers such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions. Negative average deviations are observed for other cities, such as Amsterdam (−17 %) and Brussels (−6 %), indicating higher regional background signal and suggesting a heterogeneous aerosol spatial distribution that conceals the urban–local signal. Finally, negative statistically significant AOD trends for the entire European continent are observed. A stronger decrease rate at the regional scale with respect to the local scale occurs for most of the cities under investigation.

Funder

Horizon 2020

Agence Nationale de la Recherche

Institut national des sciences de l'Univers

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3