Consistency of Aerosol Optical Properties between MODIS Satellite Retrievals and AERONET over a 14-Year Period in Central–East Europe

Author:

Deaconu Lucia-Timea1ORCID,Mereuță Alexandru1ORCID,Radovici Andrei1,Ștefănie Horațiu Ioan1ORCID,Botezan Camelia1,Ajtai Nicolae1ORCID

Affiliation:

1. Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania

Abstract

Aerosols influence Earth’s climate by interacting with radiation and clouds. Remote sensing techniques aim to enhance our understanding of aerosol forcing using ground-based and satellite retrievals. Despite technological advancements, challenges persist in reducing uncertainties in satellite remote sensing. Our study examines retrieval biases in MODIS sensors on Terra and Aqua satellites compared to AERONET ground-based measurements. We assess their performance and the correlation with the AERONET aerosol optical depth (AOD) using 14 years of data (2010–2023) from 29 AERONET stations across 10 Central–East European countries. The results indicate discrepancies between MODIS Terra and Aqua retrievals: Terra overestimates the AOD at 16 AERONET stations, while Aqua underestimates the AOD at 21 stations. The examination of temporal biases in the AOD using the calculated estimated error (ER) between AERONET and MODIS retrievals reveals a notable seasonality in coincident retrievals. Both sensors show higher positive AOD biases against AERONET in spring and summer compared to fall and winter, with few ER values for Aqua indicating poor agreement with AERONET. Seasonal variations in correlation strength were noted, with significant improvements from winter to summer (from R2 of 0.58 in winter to R2 of 0.76 in summer for MODIS Terra and from R2 of 0.53 in winter to R2 of 0.74 in summer for MODIS Aqua). Over the fourteen-year period, monthly mean aerosol AOD trends indicate a decrease of −0.00027 from AERONET retrievals and negative monthly mean trends of the AOD from collocated MODIS Terra and Aqua retrievals of −0.00023 and −0.00025, respectively. An aerosol classification analysis showed that mixed aerosols comprised over 30% of the total aerosol composition, while polluted aerosols accounted for more than 22%, and continental aerosols contributed between 22% and 24%. The remaining 20% consists of biomass-burning, dust, and marine aerosols. Based on the aerosol classification method, we computed the bias between the AERONET AE and MODIS AE, which showed higher AE values for AERONET retrievals for a mixture of aerosols and biomass burning, while for marine aerosols, the MODIS AE was larger and for dust the results were inconclusive.

Publisher

MDPI AG

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3