Snow–vegetation–atmosphere interactions in alpine tundra

Author:

Pirk NorbertORCID,Aalstad KristofferORCID,Yilmaz Yeliz A.ORCID,Vatne Astrid,Popp Andrea L.ORCID,Horvath PeterORCID,Bryn AndersORCID,Vollsnes Ane Victoria,Westermann Sebastian,Berntsen Terje Koren,Stordal FrodeORCID,Tallaksen Lena MereteORCID

Abstract

Abstract. The interannual variability of snow cover in alpine areas is increasing, which may affect the tightly coupled cycles of carbon and water through snow–vegetation–atmosphere interactions across a range of spatio-temporal scales. To explore the role of snow cover for the land–atmosphere exchange of CO2 and water vapor in alpine tundra ecosystems, we combined 3 years (2019–2021) of continuous eddy covariance flux measurements of the net ecosystem exchange of CO2 (NEE) and evapotranspiration (ET) from the Finse site in alpine Norway (1210 m a.s.l.) with a ground-based ecosystem-type classification and satellite imagery from Sentinel-2, Landsat 8, and MODIS. While the snow conditions in 2019 and 2021 can be described as site typical, 2020 features an extreme snow accumulation associated with a strong negative phase of the Scandinavian pattern of the synoptic atmospheric circulation during spring. This extreme snow accumulation caused a 1-month delay in melt-out date, which falls in the 92nd percentile in the distribution of yearly melt-out dates in the period 2001–2021. The melt-out dates follow a consistent fine-scale spatial relationship with ecosystem types across years. Mountain and lichen heathlands melt out more heterogeneously than fens and flood plains, while late snowbeds melt out up to 1 month later than the other ecosystem types. While the summertime average normalized difference vegetation index (NDVI) was reduced considerably during the extreme-snow year 2020, it reached the same maximum as in the other years for all but one of the ecosystem types (late snowbeds), indicating that the delayed onset of vegetation growth is compensated to the same maximum productivity. Eddy covariance estimates of NEE and ET are gap-filled separately for two wind sectors using a random forest regression model to account for complex and nonlinear ecohydrological interactions. While the two wind sectors differ markedly in vegetation composition and flux magnitudes, their flux response is controlled by the same drivers as estimated by the predictor importance of the random forest model, as well as by the high correlation of flux magnitudes (correlation coefficient r=0.92 for NEE and r=0.89 for ET) between both areas. The 1-month delay of the start of the snow-free season in 2020 reduced the total annual ET by 50 % compared to 2019 and 2021 and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink (−31 to −6 gC m−2 yr−1) to a source (34 to 20 gC m−2 yr−1). These results underpin the strong dependence of ecosystem structure and functioning on snow dynamics, whose anomalies can result in important ecological extreme events for alpine ecosystems.

Funder

Norges Forskningsråd

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference98 articles.

1. Aalstad, K., Westermann, S., and Bertino, L.: Evaluating Satellite Retrieved Fractional Snow-Covered Area at a High-Arctic Site Using Terrestrial Photography, Remote Sens. Environ., 239, 111618, https://doi.org/10.1016/j.rse.2019.111618, 2020. a

2. Aas, K. S., Gisnås, K., Westermann, S., and Berntsen, T. K.: A Tiling Approach to Represent Subgrid Snow Variability in Coupled Land Surface–Atmosphere Models, J. Hydrometeorol., 18, 49–63, https://doi.org/10.1175/JHM-D-16-0026.1, 2017. a

3. Adler, B., Gohm, A., Kalthoff, N., Babić, N., Corsmeier, U., Lehner, M., Rotach, M. W., Haid, M., Markmann, P., Gast, E., Tsaknakis, G., and Georgoussis, G.: CROSSINN: A Field Experiment to Study the Three-Dimensional Flow Structure in the Inn Valley, Austria, Bull. Am. Meteorol. Soc., 102, E38–E60, https://doi.org/10.1175/BAMS-D-19-0283.1, 2021. a

4. Arias, P., Bellouin, N., Coppola, E., et al.: Climate Change 2021: The Physical Science Basis, Contribution of Working Group14 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Technical Summary, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 33–144, https://doi.org/10.1017/9781009157896.002, 2021. a

5. Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, Bull. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3