The snow cover is more important than other climatic variables on the prediction of vegetation dynamics in the Pyrenees (1981–2014)

Author:

Alonso-González EstebanORCID,Ilzarbe-Senosiain Itsaso,Lopez-Moreno Juan IgnacioORCID,Lucas-Borja Manuel EstebanORCID,Vicente-Serrano Sergio MORCID,Beguería SantiagoORCID,Gascoin SimonORCID

Abstract

Abstract The dynamics of the mountain vegetation is governed by multiple climatic drivers including temperature, precipitation, radiation and snow cover variability. However, in the Mediterranean environment, little is known about the relative importance of each variable. In this study we assess how different snowpack indices (the maximum annual accumulation, the length of the snow season, and the melt-out date) and key climate variables (precipitation, temperature and shortwave solar radiation) control the interannual variability of the maximum Normalized Difference Vegetation Index (peak NDVI) in the Pyrenees. We use a 33 year long remote sensing dataset (1981–2014) to build a statistical model relating the annual peak NDVI with snow and climate variables. In elevated areas characterized by a well developed seasonal snowpack the melt-out date was the most important climatic variable for predicting the annual peak NDVI. However, at lower elevations where snow presence is ephemeral, shortwave solar radiation was the most important variable. This change in the relative importance of climatic variables occurs around 1300 m a.s.l. The results do not show a significant contribution of maximum snow accumulation, suggesting that indicators of snow presence (i.e. melt-out date or snow season duration), which are significantly easier to obtain than snow mass indicators from remote sensing, could be used to model the influence of the snowpack on peak NDVI at regional scale.

Funder

Spanish Autonomous Organism of National Parks

Climate Change Innitiative - European Space Agency

Centre national d’études spatiales

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3