Transfer Efficiency and Organization in Turbulent Transport over Alpine Tundra

Author:

Mack Laura,Berntsen Terje Koren,Vercauteren Nikki,Pirk Norbert

Abstract

AbstractThe exchange of momentum, heat and trace gases between atmosphere and surface is mainly controlled by turbulent fluxes. Turbulent mixing is usually parametrized using Monin–Obukhov similarity theory (MOST), which was derived for steady turbulence over homogeneous and flat surfaces, but is nevertheless routinely applied to unsteady turbulence over non-homogeneous surfaces. We study four years of eddy-covariance measurements at a highly heterogeneous alpine valley site in Finse, Norway, to gain insights into the validity of MOST, the turbulent transport mechanisms and the contributing coherent structures. The site exhibits a bimodal topography-following flux footprint, with the two dominant wind sectors characterized by organized and strongly negative momentum flux, but different anisotropy and contributions of submeso-scale motions, leading to a failure of eddy-diffusivity closures and different transfer efficiencies for different scalars. The quadrant analysis of the momentum flux reveals that under stable conditions sweeps transport more momentum than the more frequently occurring ejections, while the opposite is observed under unstable stratification. From quadrant analysis, we derive the ratio of the amount of disorganized to organized structures, that we refer to as organization ratio (OR). We find an invertible relation between transfer efficiency and corresponding organization ratio with an algebraic sigmoid function. The organization ratio further explains the scatter around scaling functions used in MOST and thus indicates that coherent structures modify MOST. Our results highlight the critical role of coherent structures in turbulent transport in heterogeneous tundra environments and may help to find new parametrizations for numerical weather prediction or climate models.

Funder

Universitetet i Oslo

Norges Forskningsråd

European Research Council

University of Oslo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3