The Influence of Submeso Processes on Stable Boundary Layer Similarity Relationships

Author:

Acevedo Otávio C.1,Costa Felipe D.2,Oliveira Pablo E. S.1,Puhales Franciano S.1,Degrazia Gervásio A.1,Roberti Débora R.1

Affiliation:

1. Universidade Federal de Santa Maria, Santa Maria, Brazil

2. Universidade Federal do Pampa, Alegrete, Brazil

Abstract

Abstract Previous observational studies in the stable boundary layer diverge appreciably on the values of dimensionless ratios between turbulence-related quantities and on their stability dependence. In the present study, the hypothesis that such variability is caused by the influence of locally dependent nonturbulent processes, referred to as submeso, is tested and confirmed. This is done using six datasets collected at sites with different surface coverage. The time-scale dependence of wind components and temperature fluctuations is presented using the multiresolution decomposition, which allows the identification of the turbulence and submeso contributions to spectra and cospectra. In the submeso range, the spectra of turbulence kinetic energy range increases exponentially with time scale. The exponent decreases with the magnitude of the turbulent fluctuations at a similar manner at all sites. This fact is used to determine the smaller time scale with relevant influence of submeso processes and a ratio that quantifies the relative importance of such nonturbulent processes with respect to turbulence. Based on that, values for the local stability parameter that are unaffected by nonturbulent processes are found. It is shown that the dimensionless ratios do not usually converge to a given value as the time scale increases and that it is as a consequence of the locally dependent submeso influence. The ratios and their stability dependence are determined at the time scales with least influence of nonturbulent processes, but significant site-to-site variability persists. Combining all datasets, expressions for the dependence of the dimensionless ratios on the local stability parameter that minimize the role of the submeso contribution are proposed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3